Derleme

Parazit ve Kanser İlişkisi

10.4274/tpd.galenos.2022.30974

  • Figen Çelik
  • Sami Şimşek

Gönderim Tarihi: 24.02.2021 Kabul Tarihi: 03.01.2022 Turkiye Parazitol Derg 2022;46(2):150-162 PMID: 35604195

Kanser, vücudun herhangi organ ya da dokusundaki hücrelerin kontrolsüz çoğalması sonucunda ortaya çıkan ve hayatı tehdit eden bir hastalık tablosudur. Parazitler ise bazı durumlarda ölüme de neden olabilen tehlikeli organizmalardır. Parazit ve kanser hücreleri eksojen büyüme faktörlerinden bağımsız olarak yaşayabilme ve çoğalabilme, apoptoza dirençli olma ve konak bağışıklık mekanizmalarından kaçabilme kapasiteleri bakımından benzerlik göstermektedirler. Bu nedenle vücudun kanser hücrelerinden ve paraziter ajanlardan tamamen kurtulması zordur. Parazit-kanser ilişkisini inceleyen in vitro çalışmalar veya deneysel hayvan çalışmaları doğrudan kansere neden olabilen parazitlerin yanı sıra, çeşitli mekanizmalarla dolaylı yoldan kanser gelişimini uyarabilen parazitlerin de olduğunu göstermiştir. Diğer taraftan bazı parazitlere karşı gelişen immün yanıtın vücutta antitümöral etkinlik gösterebildiği de bilinmektedir. Paraziter ajanların immün yanıtın düzenlenmesi, metastaz ve anjiyogenezi önlenmesi, proliferatif sinyallerin inhibisyonu, kanser gelişimini indükleyen enflamatuvar yanıtların düzenlenmesi yoluyla hem tümöral hem de antitümöral etkileri bulunabilmektedir. Bu derlemede, parazit kanser ilişkisi tedavi hedefi olabilecek ortak moleküler yapılar göz önünde bulundurularak ayrıntılı olarak incelenmiştir.

Anahtar Kelimeler: Kanser, parazit, ilaç, antijen

GİRİŞ

Kanser, hücrelerin çoğalması, farklılaşması ve apoptozu arasındaki dengenin çoğalma lehine olacak şekilde bozulmasıdır. Normal hücreler çoğalmak için büyüme faktörlerine gereksinim duyarken, kanser hücrelerinde kontrolsüz bir hücre bölünmesi mevcuttur (1). Dünya’da her yıl yaklaşık 14 milyon insan kansere yakalanmakta ve bu insanların 8,2 milyonu kansere bağlı nedenlerle kaybedilmektedir. Kansere yakalanma oranının önümüzdeki 20 yıl içinde daha da artacağı ve 22 milyona kadar ulaşabileceği tahmin edilmektedir (2).

Kanseri indükleyebilen ajanlara genel olarak karsinojen adı verilmektedir. Bu ajanlardan genomun replikasyonu sırasında DNA bazlarında mutasyona neden olarak kanser gelişimini indükleyenler ise mutajen olarak adlandırılmaktadır. Tütün dumanında bulunan benzo (a) piren veya dimetilnitrozamin, bazı mikroorganizmalar, radyasyon, östrojenler gibi hücre çoğalmasını uyaran bazı hormonlar en çok bilinen karsinojenlerdendir (3). Uluslararası Kanser Araştırmaları Ajansı (IARC) “insanlar için karsinojen” olan ve grup 1 karsinojen olarak sınıflandırılan 11 patojen mikroorganizma türü tanımlamıştır. Bu ajanlar, Helicobacter pylori, Hepatit B virüsü, Hepatit C virüsü, Opisthorchis viverrini, Clonorchis sinensis, Schistosoma haematobium, insan papilloma virüsü (HPV), Epstein-Barr virüsü, insan T-hücresi lenfotropik virüs tip-1, insan herpes virüsü tip-8 ve insan immün yetmezlik virüsü tip-1’dir (4-6). IARC tarafından kansere neden olabileceği kabul edilen patojenlere ek olarak, diğer birçok paraziter ajan da çeşitli mekanizmalar ile kanserin gelişiminde rol oynayabilmektedir (Tablo 1).

Karsinojen olan bu parazitlere ek olarak, bazı parazitler direkt kanser gibi davranabilmektedir. Örneğin, insanlarda Echinococcus multilocularis’in neden olduğu alveolar ekinokokkozis, karaciğer, akciğer ve beyin tümörü gibi davranmakta, çok hızlı büyümekte ve yayılmaktadır. Metasestodun sınırsız proliferasyon kapasitesinin, fosforilasyona bağlı sinyal olaylarında rol alarak DNA onarım mekanizmalarını inhibe eden ve apoptozu önleyen 14-3-3 isimli protein ailesinin aşırı üretimi ile ilgili olabileceği belirtilmektedir (7).

Klinik ve Araştırma Etkileri

Kanser hücreleri ve parazitler arasında çok sayıda benzerlikler mevcuttur. Her ikisi de insanlarda veya diğer memelilerde apoptoza dirençlidirler. Ayrıca hücre içi parazitlerin konak hücrelerinin apoptoz mekanizmasına müdahale ettiği gösterilmiştir (8). Konak adaptasyonu iyi olan parazitler ve iyi huylu tümörler konağı hemen öldürmezler. Konağın bağışıklık sisteminden kaçan parazit ve kanser hücreleri, bağışıklığı zayıflamış organizmanın dokularında yayılırlar. Bu dokulara ulaşmak için salgıladıkları proteazlar gibi birtakım molekülleri ve çeşitli sinyal yollarını kullandıkları bilinmektedir (9). Konak dokularında hayatta kalmak isteyen parazitler konağın apoptoz mekanizmalarına müdahale etmekte olup, içinde yaşadıkları konak hücrelerinin apoptozunu önlerken, parazitlere karşı gelişen bağışık yanıtını azaltmak için immün sistem hücrelerinin apoptozunu indüklemektedirler. Böylece konak dokularında korunaklı bir şekilde yaşamlarını uzun süre devam ettirebilirler (10).

Hayatı tehdit eden kanser, gelişmiş ülkelerde ölüm nedenleri arasında ilk sıralarda yer almakla birlikte, çeşitli enfeksiyonlar ve paraziter hastalıkların az gelişmiş ülkelerde ana ölüm nedenleri olarak kabul edildiği ifade edilmektedir. Dünya Sağlık Örgütü’nün 2002 yılı istatistiklerine göre, gelişmiş ve gelişmekte olan toplam 15 ülkede bulaşıcı ve paraziter hastalıklardan kaynaklanan ölüm sayısı gelişmiş ülkelerde ortalama 12,6/100.000 iken gelişmekte olan ülkelerde 962,6/100.000 olmuştur. Aynı yıl kanserden kaynaklanan ölüm sayısı gelişmiş ülkelerde 230,6/100.000 iken gelişmekte olan ülkelerde bu oran 59,8/100.000 olarak açıklamıştır. Bu ülkelerdeki ölüm nedenlerindeki bu fark istatistiksel olarak anlamlı bulunmuştur (11,12). Parazit ve kanserin bazı temel biyolojik yönleri arasında benzerliği parazitologlara onkolojide kullanılanlara benzer yaklaşımlar kullanma ve bu alanlar arasındaki ilişkiyi keşfetme konusunda ilham vermiştir. Onkoloji araştırmaları, parazitoloji araştırmalarındaki genomik araştırmaların yolunu açmış, farklı teknolojiler ve deneysel yaklaşımlar kullanılmış ve test edilmiştir. Tüm gelişmelere rağmen, patojenler ve kanser arasındaki bağlantıyı kanıtlamak hala zordur. Çalışmaların çoğu epidemiyolojik nitelikte olup, ilgili mekanizmalar büyük ölçüde bilinmemektedir (13,14). Ek olarak, bir parazit enfeksiyonu ile kanserin gelişmesi arasında onlarca yıl geçebilmektedir. Örneğin; mesane kanseri, Schistosoma haematobium enfeksiyonundan 40-50 yıl sonra ortaya çıkabilmektedir (15).

Epidemiyolojik araştırmalar, bir popülasyonda parazitle enfekte konakların genellikle semptom göstermediğini ortaya koymaktadır (16). Bu durumda, uyarılan bağışıklık yanıt antitümör etkiler gösterebilmektedir. Trichinella spiralis ile enfekte olmuş farelerde oluşan antikorların tümör büyümesine ve metastazına karşı antitümör etki göstermesi buna örnek olarak verilebilir (17). Paraziter hastalıkların tümör oluşumunu önlemedeki etkilerinin, apoptozun indüklenmesi, konak bağışık yanıtının aktivasyonu, metastaz ve anjiyogenezin önlenmesi, çoğalma sinyallerinin inhibisyonu ve kanser oluşumunu tetikleyen enflamatuvar yanıtların düzenlenmesi yoluyla olabileceği belirtilmektedir (18). Diğer taraftan, parazit yüküne ve bağışıklık yanıtlarına bağlı olarak enfeksiyon şiddeti fazla olan bireylerde, parazitlerin neden olduğu kronik enflamasyon ortamı, konakta kanser gelişmesine neden olabilir. Bu duruma örnek olarak; Clonorchis sinensis ve Opisthorchis viverini (kolanjiyokarsinom), Schistosoma japonicum (karaciğer kanseri ve kolorektal kanser), Schistosoma mansoni (kolorektal kanser) ve Schistosoma haematobium (mesane kanseri) gibi parazitler verilebilir (19).

Parazit ve kanser ilişkisi çeşitli hayvan modellerinde de araştırılmıştır (Tablo 2). Deneysel olarak adenokarsinom oluşturulan farelere sekiz farklı Trypanosoma cruzi virülan suşu verilerek tümör büyümesi üzerinde etkisi araştırılmış ve tümör büyümesini doz ve suş bağımlı olarak belirli düzeylerde azalttığı gösterilmiştir (20). Yine Toxoplasma gondii’nin ve Toxocara canis’in deney hayvanlarında ve in vitro kanser modellerinde Trypanosoma cruzi’ye benzer olarak anti-tümör etkinlik gösterdiği belirtilmiştir. T. gondii ve T. canis parazit yumurta antijenleri fibrosarkom fare modelinde tümör büyümesinin inhibisyonunu indüklediği tespit edilmekle birlikte, parazit antijenlerinin tümör büyümesine nasıl müdahale ettiği ve bu antijenlerin antikanser etkilerinin mekanizmasının ne olduğu anlaşılamamıştır. Bir olasılık, parazit antijenleri tarafından tetiklenen bağışıklık tepkilerinin tümör hücrelerine karşı spesifik olmayan bir şekilde etkili olabilmesidir. Bu bağlamda T. gondii ve T. canis antikorlarının hedefe yönelik tedavide konak hücrelerine zarar vermeden kullanılabilmesi fikri ortaya çıkmıştır (21).

Parazitler ve kanserler arasında benzer antijenler de rapor edilmiştir. Kanser hücrelerinde ve bazı parazitlerde ortak olarak eksprese edilen müsin tipi Tn, TF, sial Tn ve Tk gibi antijenler bulunmakta olup (22,23), bu antijenler Tablo 3’te listelenmiştir. Ortak antijenlerin parazit ve kanser hücrelerinin tutunması, invazyonu ve metastazında rol oynadığı gösterilmiştir (24). S. mansoni’nin yüzeyinde eksprese olan TF antijenine karşı oluşan anti-TF antikorlarının üreteryal ve mesane karsinomlarıyla reaksiyona girdiği ve TF antijenine sahip olan üriner sistem dokularında proliferasyona, hiperplazi ve sonunda kanser gelişimine yol açtığı belirtilmiştir (25). Diğer taraftan ortak antijenlerle yapılan aşılamanın antitümöral etkide olabileceği ve immünoterapide kullanılabileceğine dair çalışmalar da literatürde mevcuttur (26). Kanserli hastalar arasında kistik ekinokokkoz prevalansının normal popülasyona göre anlamlı derecede düşük bulunması kanser ve E. granulosus ortak antijenlerinin oluşturduğu bağışık yanıtın bir diğerine karşı çapraz koruyuculuk oluşturabileceği yönünde yorumlanmıştır. Kistik ekinokokkoza bağlı olarak gelişen kistlerin laminer ve germinal tabakalarına karşı oluşan antikorların, kanser antijenleri ile reaksiyona girmesi iki yapı arasında ortak antijenler olduğunu göstermektedir. Ayrıca bazı kanserli hastaların serumları ile kistik ekinokokkoz antijenleri arasında bir çapraz reaksiyon tespit edilmesi de bu görüşü destekler nitelikte olup, ortak olarak bulunan antijenlerden bir tanesi Tn antijenidir. Tn antijeni, glikosillenmiş bir moleküldür, bu nedenle kanser hastasının serumu ile kist hidatik antijeni arasındaki çapraz reaksiyon, glikoproteinlerin karbonhidrat dalları ile ilgili olabilir. Bu nedenle, hem kanser dokusunda hem de karaciğer kistik ekinokokkozunda saptanan Tn ortak antijeni, parazitin kanser hücrelerinin proliferasyonunu baskılayabileceğine örnek olarak gösterilebilir (27). Parazitler bağışıklık sistemini aktive ederek tümör hücreleriyle vücudun savaşmasına katkıda bulunabileceği gibi, hücre döngüsünde proliferasyonu baskılayarak da antitümör etkinlik gösterebilir. Bununla birlikte parazitlerin konakta oluşturduğu antitümör yanıtlar kanserin türü, aşaması, konağın bağışıklık sistemi gibi faktörlere bağlı olarak değişkenlik gösterebilmekte olup, tüm parazitler ve parazitlere ait ürünler kanser üzerinde aynı etkiye sahip olmayabilir (18). Yani ortak antijenler kanser gelişimine karşı vücudu koruyabildiği gibi, parazitin türüne ve bağışıklık yanıta bağlı kanser gelişimini de tetikleyebilirler. Ayrıca helmint ve protozoonların kanser tedavisinde kullanılma fikrinin, parazitlerin neden olacağı enfeksiyon şiddetinin konağın bağışıklık sistemine bağlı olarak oldukça ağır seyredebileceği göz önünde bulundurulduğunda da uygulanabilir olmadığı ileri sürülmüştür. Ancak attenue parazitlerin kullanılması fikri ile bu tereddütler ortadan kaldırılmaya çalışılmıştır (28). Bununla birlikte, parazitlerin salgıladıkları metabolitlerin ve yüzey moleküllerinin kanser hücreleri veya tümör mikro çevresi üzerinde doğrudan bir etkiye sahip olduğunun gösterilmesi ile birlikte, bu antijenlerin kanser immünoterapisinde kullanılma potansiyeli ortaya çıkmış olup, bu durumun, yeni antitümör tedavileri oluşturmanın anahtarı olabileceği düşünülmektedir (18).

Gelişmiş ülkelerde paraziter hastalıkların kontrol altına alınması ile kanser prevalansında belirgin bir artış olduğu ileri sürülmüştür (11,12). Parazit ve kanser ilişkisini araştıran çalışmalar antiparazitik ve antikanser ilaçlar için ortak hedef moleküllerin belirlenmesini, kanserlerin kontrolü ve tedavisi için bazı yeni ilaçların keşfedilmesini sağlayabilir. Kanser ve parazitlerin ortak özelliklerinden yola çıkarak antiparazitik ve antikanser ilaçlarının karşılıklı etkileri ile ilgili araştırmalar yapılmıştır. Antiparazitik ve antikanser ilaçların karşılıklı etkileşimleri hücre büyümesinin inhibisyonu ve apoptozun uyarılması, antitübülin aktivitesi ve bu ilaçların zar üzerindeki yıkıcı etkileri, bağışıklık sisteminin düzenlenmesi, parazit ve kanser metabolizmasındaki değişimi gibi çeşitli mekanizmalarla açıklanmıştır. Bu konular Tablo 4 ve 5’te detaylıca gösterilmiş olup, antiparaziter aktiviteye sahip antikanser ilaçlar Tablo 5’te, antikanser aktiviteye sahip antiparaziter ilaçlar ise Tablo 4’te gösterilmiştir. Ancak antikanser ilaçların antiparaziter ajan olarak kullanılmasıyla ilgili iki sorun öne çıkmaktadır: Birincisi, antikanser ilaçlar genellikle daha toksiktir, örnek olarak metotreksatın sıtma tedavisinde etkili olduğu gösterilmiş olmasına rağmen toksisitesiyle ilgili endişeler nedeniyle yaygın olarak kullanılamamış olması verilebilir. İkincisi ise antikanser ilaçların antiparaziter ilaçlardan daha pahalı olmalarıdır. Bu nedenle, antiparazitik ilaçları antikanser ajanları olarak uygun hale getirmek için çalışmalar yapmak daha faydalı olacaktır. Ayrıca, antikanser ve antiparaziter ilaçların karşılıklı etkisinde yer alan mekanizmaları anlamak bu amaca ulaşmada faydalı olabilir. Yine, antikanser ve antiparaziter ilaçların karşılıklı etkisi için paylaşılan antijenlerin veya yüzey moleküllerinin belirlenmesi, daha önce belirtildiği gibi kanser immünoterapisinde kullanılmak üzere uygun moleküller sağlayabilir (29). Bu nedenle, paraziter hastalıkların farklı kanser türlerinde neden olduğu potansiyel yararlı ve/veya zararlı etkileri açıklığa kavuşturmak için daha kapsamlı çalışmalara ihtiyaç vardır (18). Anti-paraziter ajanlar, gelecekte mevcut antikanser ilaçların etkisini artırmak için adjuvanlar olarak kullanılabilirler. Birkaç in vitro çalışma, parazitlerden köken alan bazı moleküllerin apoptozu indükleyebileceğini göstermesine rağmen, sadece birkaç çalışma altta yatan mekanizmayı tanımlamıştır. Bir araştırma parazit derivelerinin apoptozu artırma etkisini kaspaz 3’ün uyarılması aracılığıyla olduğunu belirtirken (30), diğer iki çalışmada antitümör etkinliğin çoğalmanın baskılanmasına veya bölgeye enflamatuvar hücrelerin toplanmasının engellenmesine bağlı olduğu ifade edilmiştir (31). Ancak, parazit kökenli moleküllerin tedavide güvenle kullanılmasını sağlamak için tüm mekanizmaları tanımlayan daha ayrıntılı çalışmalara ihtiyaç duyulmaktadır.


SONUÇ

Parazit ve kanser ilişkisi hakkında karşılaştırmalı çalışmalar, ortak özellikleri olduğuna kanaat getirmektedir. Parazit enfeksiyonlarının kanserojenik ve antikanser etkilerinin altında yatan mekanizmaların açıklığa kavuşturulmasının parazitoloji ve onkoloji bilimine önemli katkılarının olacağı açıktır. Yine, bu mekanizmaların bilinmesi halinde biyolojik ajanlardan türetilen moleküllerin kemoterapi ve/veya ve immünoterapi ile birlikte kullanılması, kanserde tedavi başarısını artırmak için kullanılabilir ve böylece kanser kaynaklı morbidite ve mortalitede azalma sağlanabilir.

*Etik

Hakem Değerlendirmesi: Editörler kurulu ve editörler kurulu dışında olan kişiler tarafından değerlendirilmiştir.

*Yazarlık Katkıları

Konsept: F.Ç., S.Ş., Dizayn: F.Ç., S.Ş., Veri Toplama veya İşleme: F.Ç., S.Ş., Analiz veya Yorumlama: S.Ş., F.Ç., Literatür Arama: F.Ç., S.Ş., Yazan: S.Ş., F.Ç.

Çıkar Çatışması: Yazarlar tarafından çıkar çatışması bildirilmemiştir.

Finansal Destek: Yazarlar tarafından finansal destek almadıkları bildirilmiştir.


Resimler

  1. Cooper GM, Hausman RE, Hausman RE. The cell: a molecular approach: ASM press Washington, DC; 2007.
  2. Butterfield LH. Cancer vaccines. BMJ 2015; 350: h988.
  3. Carbone M, Arron ST, Beutler B, Bononi A, Cavenee W, Cleaver JE, et al. Tumour predisposition and cancer syndromes as models to study gene–environment interactions. Nat Rev Cancer 2020; 20: 533-49.
  4. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, et al. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 2012; 13: 607-15.
  5. Bouvard V, Baan R, Straif K, Grosse Y, Secretan B, El Ghissassi F, et al. A review of human carcinogens--Part B: biological agents. Lancet Oncol 2009; 10: 321-2.
  6. Group IW. IARC monographs on the evaluation of carcinogenic risks to humans. IARC; 2012.
  7. Siles-Lucas M, Nunes CP, Zaha A. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes. Parasitology 2001; 122(Pt 3): 281-7.
  8. Kaczanowski S, Sajid M, Reece SE. Evolution of apoptosis-like programmed cell death in unicellular protozoan parasites. Parasit Vectors 2011; 4: 1-8.
  9. Doenhoff M, Curtis RH, Ngaiza J, Modha J. Proteases in the schistosome life cycle: a paradigm for tumour metastasis. Cancer Metastasis Rev 1990; 9: 381-92.
  10. James ER, Green DR. Manipulation of apoptosis in the host–parasite interaction. Trends Parasitol 2004; 20: 280-7.
  11. Data and statistics, causes of death. Table 3. Estimated deaths per 100.000 population by cause and number state. World Health Organization. 2002. Available from: https://www.who.int/
  12. Cancer mortality among American Indians and Alaska Natives--United States, 1994-1998. MMWR 2003; 52: 704-7.
  13. Cong W, Liu G-H, Meng QF, Dong W, Qin SY, Zhang FK, et al. Toxoplasma gondii infection in cancer patients: prevalence, risk factors, genotypes and association with clinical diagnosis. Cancer Lett 2015; 359: 307-13.
  14. Garcia SB, Aranha AL, Garcia FRB, Basile FV, Pinto APM, de Oliveira EC, et al. A retrospective study of histopathological findings in 894 cases of megacolon: what is the relationship between megacolon and colonic cancer? Rev Inst Med Trop Sao Paulo 2003; 45: 91-3.
  15. Gandomani HS, Tarazoj AA, Siri FH, karimi Rozveh A, Hosseini S, Borujeni NN, et al. Essentials of bladder cancer worldwide: incidence, mortality rate and risk factors. Biomed Res Ther 2017; 4: 1638-55.
  16. Araújo A, Reinhard K, Ferreira LF, Pucu E, Chieffi PP. Paleoparasitology: the origin of human parasites. Arq Neuropsiquiat 2013; 71(9B): 722-6.
  17. Kang YJ, Jo JO, Cho MK, Yu HS, Leem SH, Song KS, et al. Trichinella spiralis infection reduces tumor growth and metastasis of B16-F10 melanoma cells. Vet Parasitol 2013; 196: 106-13.
  18. Callejas BE, Martínez-Saucedo D, Terrazas LI. Parasites as negative regulators of cancer. Biosci Rep 2018; 38: BSR20180935.
  19. Feng M, Cheng X. Parasite-associated cancers (blood flukes/liver flukes). Adv Exp Med Biol 2017; 193-205.
  20. Batmonkh Z, Kallinikova V, Pakhorukova L, Kravtsov E, Karpenko L, Dalin M. In vivo anticancer activity of lysates from Trypanosoma cruzi of different genetic groups. Bull Exp Biol Med 2006; 142: 470-3.
  21. Darani HY, Shirzad H, Mansoori F, Zabardast N, Mahmoodzadeh M. Effects of Toxoplasma gondii and Toxocara canis antigens on WEHI-164 fibrosarcoma growth in a mouse model. Korean J Parasitol 2009; 47: 175-7.
  22. Ubillos L, Medeiros A, Cancela M, Casaravilla C, Saldaña J, Domínguez L, et al. Characterization of the carcinoma-associated Tk antigen in helminth parasites. Exp Parasitol 2007; 116: 129-36.
  23. Errico DA, Medeiros A, Míguez M, Casaravilla C, Malgor R, Carmona C, et al. O-glycosylation in Echinococcus granulosus: identification and characterization of the carcinoma-associated Tn antigen. Exp Parasitol 2001; 98: 100-9.
  24. Baldus SE, Engelmann K, Hanisch FG. MUC1 and the MUCs: a family of human mucins with impact in cancer biology. Crit Rev Clin lab Sci 2004; 41: 189-231.
  25. Thors C, Jansson B, Helin H, Linder E. Thomsen-Friedenreich oncofetal antigen in Schistosoma mansoni: localization and immunogenicity in experimental mouse infection. Parasitology 2006; 132: 73-81.
  26. Slovin SF, Keding SJ, Ragupathi G. Carbohydrate vaccines as immunotherapy for cancer. Immun Cell Biol 2005; 83: 418-28.
  27. Daneshpour S, Bahadoran M, Hejazi SH, Eskandarian AA, Mahmoudzadeh M, Darani HY. Common antigens between hydatid cyst and cancers. Adv Biomed Res 2016; 5: 9.
  28. Baird JR, Byrne KT, Lizotte PH, Toraya-Brown S, Scarlett UK, Alexander MP, et al. Immune-mediated regression of established B16F10 melanoma by intratumoral injection of attenuated Toxoplasma gondii protects against rechallenge. J Immunol 2013; 190: 469-78.
  29. Darani HY, Yousefi M. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy. Future Oncol 2012; 8: 1529-35.
  30. Atayde VD, Jasiulionis MG, Cortez M, Yoshida N. A recombinant protein based on Trypanosoma cruzi surface molecule gp82 induces apoptotic cell death in melanoma cells. Melanoma Res 2008; 18: 172-83.
  31. Molinari JL, Mejia H, White Jr AC, Garrido E, Borgonio VM, Baig S, et al. Taenia solium: a cysteine protease secreted by metacestodes depletes human CD4 lymphocytes in vitro. Exp Parasitol 2000; 94: 133-42.
  32. Berry A, Iriart X, Fillaux J, Magnaval J. [Urinary schistosomiasis and cancer]. Bull Soc Pathol Exot 2017; 110: 68-75.
  33. Khaled H. Schistosomiasis and cancer in Egypt. J Adv Res 2013; 4: 461-6.
  34. Figueiredo JC, Richter J, Borja N, Balaca A, Costa S, Belo S, et al. Prostate adenocarcinoma associated with prostatic infection due to Schistosoma haematobium. Case report and systematic review. Parasitol Res 2015; 114: 351-8.
  35. Sekiguchi A, Shindo G, Okabe H, Aoyanagi N, Furuse A, Oka T. [A case of metastatic lung tumor of the colon cancer with ova of Schistosoma japonicum in the resected lung specimen]. Kyobu Geka 1989; 42: 1025-8.
  36. Chen MG. Assessment of morbidity due to Schistosoma japonicum infection in China. Infect Dis Poverty 2014; 3: 16.
  37. Matsuda K, Masaki T, Ishii S, Yamashita H, Watanabe T, Nagawa H, et al. Possible associations of rectal carcinoma with Schistosoma japonicum infection and membranous nephropathy: a case report with a review. Japan J Clin Oncol 1999; 29: 576-81.
  38. Van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite infection, carcinogenesis and human malignancy. EBioMedicine 2017; 15: 12-23.
  39. Qiu DC, Hubbard A, Zhong B, Zhang Y, Spear R. A matched, case-control study of the association between Schistosoma japonicum and liver and colon cancers, in rural China. Ann Trop Med Parasitol 2005; 99: 47-52.
  40. Almeida GFG, Sarinho FW, de Abreu PC, Filho JBO, Moura MAL, Ribeiro LNB, et al. DNA Repair Defect and RAS Mutation in Two Patients With Schistosoma mansoni-Associated Colorectal Cancer: Carcinogenesis Steps or Mere Coincidence? J Global Oncol 2017; 3: 423-6.
  41. Salim OE, Hamid HK, Mekki SO, Suleiman SH, Ibrahim SZ. Colorectal carcinoma associated with schistosomiasis: a possible causal relationship. World J Surg Oncol 2010; 8: 68.
  42. Basílio-de-Oliveira CA, Aquino A, Simon EF, Eyer-Silva WA. Concomitant prostatic schistosomiasis and sdenocarcinoma: case report and review. Braz J Infec Dis 2002; 6: 45-9.
  43. Madbouly KM, Senagore AJ, Mukerjee A, Hussien AM, Shehata M, Navine P, et al. Colorectal cancer in a population with endemic Schistosoma mansoni: is this an at-risk population? Int J Colorectal Dis 2007; 22: 175-81.
  44. Kiremit MC, Cakir A, Arslan F, Ormeci T, Erkurt B, Albayrak S. The bladder carcinoma secondary to Schistosoma mansoni infection: A case report with review of the literature. Int J Surg Case Rep 2015; 13: 76-8.
  45. Cuesta RA, Kaw YT, Duwaji MS. Schistosoma mekongi infection in a leiomyosarcoma of the small bowel: a case report. Hum Pathol 1992; 23: 471-3.
  46. Müller M. [A young woman from Cameroon with rectal blood loss, intestinal Schistosomiasis and rectosigmoid carcinoma]. Ned Tijdschr Geneeskd 2008; 152: 951-5.
  47. Sripa B, Brindley PJ, Mulvenna J, Laha T, Smout MJ, Mairiang E, et al. The tumorigenic liver fluke Opisthorchis viverrini-multiple pathways to cancer. Trend Parasitol 2012; 28: 395-407.
  48. Fava G, Lorenzini I. Molecular pathogenesis of cholangiocarcinoma. Int J Hepatol 2011.
  49. Kim EM, Bae YM, Choi MH, Hong ST. Cyst formation, increased anti-inflammatory cytokines and expression of chemokines support for Clonorchis sinensis infection in FVB mice. Parasitol Int 2012; 61: 124-9.
  50. Saltykova IV, Ogorodova LM, Bragina EY, Puzyrev VP, Freidin MB. Opisthorchis felineus liver fluke invasion is an environmental factor modifying genetic risk of atopic bronchial asthma. Acta Trop 2014; 139: 53-6.
  51. Molyneux EM, Rochford R, Griffin B, Newton R, Jackson G, Menon G, et al. Burkitt’s lymphoma. Lancet 2012; 379: 1234-44.
  52. Torgbor C, Awuah P, Deitsch K, Kalantari P, Duca KA, Thorley-Lawson DA. A multifactorial role for P. falciparum malaria in endemic Burkitt’s lymphoma pathogenesis. PLoS Pathog 2014; 10: e1004170.
  53. Aka P, Vila MC, Jariwala A, Nkrumah F, Emmanuel B, Yagi M, et al. Endemic Burkitt lymphoma is associated with strength and diversity of Plasmodium falciparum malaria stage-specific antigen antibody response. Blood 2013; 122: 629-35.
  54. Tanaka T, Hirata T, Parrott G, Higashiarakawa M, Kinjo T, Kinjo T, et al. Relationship among Strongyloides stercoralis infection, human T-cell lymphotropic virus type 1 infection, and cancer: a 24-year cohort inpatient study in Okinawa, Japan. Am J Trop Med Hyg 2016; 94: 365-70.
  55. Gabet A-S, Mortreux F, Talarmin A, Plumelle Y, Leroy A, Gessain A, et al. High circulating proviral load with oligoclonal expansion of HTLV-1 bearing T cells in HTLV-1 carriers with strongyloidiasis. Oncogene 2000; 19: 4954-60.
  56. Seo AN, Goo YK, Chung DI, Hong Y, Kwon O, Bae HI. Comorbid gastric adenocarcinoma and gastric and duodenal Strongyloides stercoralis infection: a case report. Korean J Parasitol 2015; 53: 95-9.
  57. Tomaino C, Catalano C, Tiba M, Aron J. Su2012 A First Case Report of Colorectal Cancer Associated With Chronic Strongyloides stercoralis Colitis and the Complex Management Decisions That Follow. Gastroenterology 2015; 148: 575.
  58. Bahrami S, Esmaeilzadeh S, Oryan A. Role of oxidative stress in concomitant occurrence of Fasciola gigantica and leiomyoma in cattle. Vet Parasitol 2014; 203: 43-50.
  59. Pastille E, Frede A, McSorley HJ, Gräb J, Adamczyk A, Kollenda S, et al. Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. PLoS Pathog 2017; 13: e1006649.
  60. Andrade R, Dantas A, Pimentel L, Galiza G, Carvalho F, Costa V, et al. Platynosomum fastosum-induced cholangiocarcinomas in cats. Vet Parasitol 2012; 190: 277-80.
  61. Kalantari N, Gorgani-Firouzjaee T, Ghaffari S, Bayani M, Ghaffari T, Chehrazi M. Association between Cryptosporidium infection and cancer: A systematic review and meta-analysis. Parasitol Int 2020; 74: 101979.
  62. Liu J, Deng M, Lancto CA, Abrahamsen MS, Rutherford MS, Enomoto S. Biphasic modulation of apoptotic pathways in Cryptosporidium parvum-infected human intestinal epithelial cells. Infect Immun 2009; 77: 837-49.
  63. Abdou AG, Harba NM, Afifi AF, Elnaidany NF. Assessment of Cryptosporidium parvum infection in immunocompetent and immunocompromised mice and its role in triggering intestinal dysplasia. Int J Infect Dis 2013; 17: 593-600.
  64. Shen DF, Herbort CP, Tuaillon N, Buggage RR, Egwuagu CE, Chan CC. Detection of Toxoplasma gondii DNA in primary intraocular B-cell lymphoma. Modern Pathol 2001; 14: 995-9.
  65. Lu N, Liu C, Wang J, Ding Y, Ai Q. Toxoplasmosis complicating lung cancer: a case report. Int Med Case Report J 2015; 8: 37-40.
  66. Sayyahfar S, Karimi A, Gharib A, Fahimzad A. Association of systemic anaplastic large cell lymphoma and active toxoplasmosis in a child. Iran J Cancer Prev 2015; 8: e3438.
  67. Thomas F, Lafferty KD, Brodeur J, Elguero E, Gauthier-Clerc M, Missé D. Incidence of adult brain cancers is higher in countries where the protozoan parasite Toxoplasma gondii is common. Biol Lett 2012; 8: 101-3.
  68. Motamedi M, Arab S, Moazzeni SM, Abadi MK, Hadjati J. Improvement of a dendritic cell-based therapeutic cancer vaccine with components of Toxoplasma gondii. Clin Vac Immunol 2009; 16: 1393-8.
  69. Kim JO, Jung SS, Kim SY, Kim TY, Shin DW, Lee JH, et al. Inhibition of Lewis lung carcinoma growth by Toxoplasma gondii through induction of Th1 immune responses and inhibition of angiogenesis. J Korean Med Sci 2007; 22(Suppl): S38-46.
  70. Herrera LA, Rodríguez U, Gebhart E, Ostrosky-Wegman P. Increased translocation frequency of chromosomes 7, 11 and 14 in lymphocytes from patients with neurocysticercosis. Mutagenes 2001;16: 495-7.
  71. Twu O, Dessí D, Vu A, Mercer F, Stevens GC, De Miguel N, et al. Trichomonas vaginalis homolog of macrophage migration inhibitory factor induces prostate cell growth, invasiveness, and inflammatory responses. Proc Natl Acad Sci U S A 2014; 111: 8179-84.
  72. Menezes RC, Tortelly R, Gomes DC, Pinto RM. Nodular typhlitis associated with the nematodes Heterakis gallinarum and Heterakis isolonche in pheasants: frequency and pathology with evidence of neoplasia. Mem Inst Oswaldo Cruz 2003; 98: 1011-6.
  73. Cock-Rada AM, Medjkane S, Janski N, Yousfi N, Perichon M, Chaussepied M, et al. SMYD3 promotes cancer invasion by epigenetic upregulation of the metalloproteinase MMP-9. Cancer Res 2012; 72: 810-20.
  74. Noya V, Bay S, Festari MF, García EP, Rodriguez E, Chiale C, et al. Mucin-like peptides from Echinococcus granulosus induce antitumor activity. Int J Oncol 2013 ;43 :775-84.
  75. Berriel E, Russo S, Monin L, Festari MF, Berois N, Fernández G, et al. Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. ScientificWorldJournal 2013; 2013: 230176.
  76. Wang X, Fu B, Yang S, Wu X, Cui G, Liu M, et al. Trichinella spiralis--A potential anti-tumor agent. Vet Parasitol 2009; 159: 249-52.
  77. Wang X, Liu M, Sun S, Liu X, Yu L, Wang X, et al. An anti-tumor protein produced by Trichinella spiralis induces apoptosis in human hepatoma H7402 cells. Vet Parasitol 2013; 194: 186-8.
  78. da Silva Manoel-Caetano F, Borim AA, Caetano A, Cury PcM, Silva AE. Cytogenetic alterations in chagasic achalasia compared to esophageal carcinoma. Cancer Genet Cytogenet 2004; 149: 17-22.
  79. Bellini MF, Manzato AJ, Silva AE, Varella-Garcia M. Chromosomal imbalances are uncommon in chagasic megaesophagus. BMC Gastroenterol 2010; 10: 20.
  80. Ubillos L, Freire T, Berriel E, Chiribao ML, Chiale C, Festari MF, et al. Trypanosoma cruzi extracts elicit protective immune response against chemically induced colon and mammary cancers. Int J Cancer 2016; 138: 1719-31.
  81. López NC, Valck C, Ramírez G, Rodríguez M, Ribeiro C, Orellana J, et al. Antiangiogenic and antitumor effects of Trypanosoma cruzi Calreticulin. PLoS Negl Trop Dis 2010; 4: e730.
  82. Kallinikova V, Borisova E, Pakhorukova L, Ogloblina T, Batmonkh T, Kravtsov E, et al. [Immunization against Trypanosoma cruzi and tumor growth in mice]. Med Parazitol (Mosk) 2006; 9-12.
  83. Kallinikova V, Batmonkh T, Kosobokova E, Pakhorukova L, Ogloblina T, Kravtsov E, et al. [Antibodies against Trypanosoma cruzi in intact mice and their oncoprotective effect]. Med Parazitol (Mosk) 2008; 11-5.
  84. Zenina A, Kravtsov E, Tsetsegsaikhan B, Yashina N, Dalin M, Karpenko L, et al. The study of immunological component in antitumor effect of Trypanosoma cruzi. Bull Exp Biol Med 2008; 145: 352-4.
  85. Kallinikova V, Matekin P, Ogloblina T, Leikina M, Kononenko A, Sokolova N, et al. [Anticancer Properties of Flagellate Protozoan Trypanosoma cruzi Chagas, 1909]. Izv Akad Nauk Ser Biol 2001; 299-311.
  86. Abello-Cáceres P, Pizarro-Bauerle J, Rosas C, Maldonado I, Aguilar-Guzmán L, González C, et al. Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection? BMC Cancer 2016; 16: 731.
  87. Hayes K, Cliffe L, Potten C, Booth C, Grencis R. Trichuris muris infection is associated with exacerbated intestinal tumours. Immunol 2013; 140: 102.
  88. León-Cabrera S, Callejas BE, Ledesma-Soto Y, Coronel J, Pérez-Plasencia C, Gutiérrez-Cirlos EB, et al. Extraintestinal helminth infection reduces the development of colitis-associated tumorigenesis. Int J Biol Sci 2014; 10: 948-56.
  89. Hunter CA, Yu D, Gee M, Ngo CV, Sevignani C, Goldschmidt M, et al. Cutting edge: systemic inhibition of angiogenesis underlies resistance to tumors during acute toxoplasmosis. The J Immunol 2001; 166: 5878-81.
  90. Pidherney MS, Alizadeh H, Stewart GL, McCulley JP, Niederkorn JY. In vitro and in vivo tumoricidal properties of a pathogenic/free-living amoeba. Cancer Lett 1993; 72: 91-8.
  91. Chen L, He Z, Qin L, Li Q, Shi X, Zhao S, et al. Antitumor effect of malaria parasite infection in a murine Lewis lung cancer model through induction of innate and adaptive immunity. PLoS One 2011; 6: e24407.
  92. Ruiz‐Manzano RA, Hernández‐Cervantes R, Del Río‐Araiza VH, Palacios‐Arreola MI, Nava‐Castro KE, Morales‐Montor J. Immune response to chronic Toxocara canis infection in a mice model. Parasite Immunol 2019; 41: e12672.
  93. McSorley HJ, Maizels RM. Helminth infections and host immune regulation. Clin Microbiol Rev 2012; 25: 585-608.
  94. Certad G, Ngouanesavanh T, Guyot K, Gantois N, Chassat T, Mouray A, et al. Cryptosporidium parvum, a potential cause of colic adenocarcinoma. Infect Agents Cancer 2007; 2: 22.
  95. Thuwajit C, Thuwajit P, Kaewkes S, Sripa B, Uchida K, Miwa M, et al. Increased cell proliferation of mouse fibroblast NIH-3T3 in vitro induced by excretory/secretory product(s) from Opisthorchis viverrini. Parasitology 2004; 129: 455-64.
  96. Maksimova GA, Pakharukova MY, Kashina EV, Zhukova NA, Kovner AV, Lvova MN, et al. Effect of Opisthorchis felineus infection and dimethylnitrosamine administration on the induction of cholangiocarcinoma in Syrian hamsters. Parasitol Int 2017; 66: 458-63.
  97. Turhan N, Esendagli G, Ozkayar O, Tunali G, Sokmensuer C, Abbasoglu O. Co‐existence of Echinococcus granulosus infection and cancer metastasis in the liver correlates with reduced Th1 immune responses. Parasite Immunol 2015; 37: 16-22.
  98. Chookami M, Sharafi S, Sefiddashti R, Bahadoran M, Pestechian N, Yousofi Darani H. Effect of alive protoscoleces of hydatid cyst on the growth of melanoma cells in mouse model. J Isfahan Med School 2014; 32: 281.
  99. Altun A, Saraydin SU, Soylu S, Inan DS, Yasti C, Ozdenkaya Y, et al. Chemopreventive effects of hydatid disease on experimental breast cancer. Asian Pac J Cancer Prev 2015; 16: 1391-5.
  100. Ranasinghe SL, Boyle GM, Fischer K, Potriquet J, Mulvenna JP, McManus DP. Kunitz type protease inhibitor EgKI-1 from the canine tapeworm Echinococcus granulosus as a promising therapeutic against breast cancer. PloS One 2018; 13: e0200433.
  101. Rostami SR, Daneshpour S, Mofid MR, Andalib A, Eskandariyan A, Yousofi HD. Effect of hydatid cyst antigens on inhibition of melanoma cancer growth in mouse model. Cell Mol Biol (Noisy-le-grand) 2018; 64: 1-5.
  102. Cheever AW, Kuntz RE, Moore JA, Huang T. Proliferative epithelial lesions of the urinary bladder in cynomolgus monkeys (Macaca fascicularis) infected with Schistosoma intercalatum. Cancer Res 1976; 36: 2928-31.
  103. Nyame K, Cummings R, Damian R. Schistosoma mansoni synthesizes glycoproteins containing terminal O-linked N-acetylglucosamine residues. J Biol Chem 1987; 262: 7990-5.
  104. Meichenin M, Rocher J, Galanina O, Bovin N, Nifant’ev N, Sherman A, et al. Tk, a new colon tumor-associated antigen resulting from altered O-glycosylation. Cancer Res 2000; 60: 5499-507.
  105. Freire T, Casaravilla C, Carmona C, Osinaga E. Mucin-type O-glycosylation in Fasciola hepatica: characterisation of carcinoma-associated Tn and sialyl-Tn antigens and evaluation of UDP-GalNAc: polypeptide N-acetylgalactosaminyltransferase activity. Int J Parasitol 2003; 33: 47-56.
  106. Casaravilla C, Malgor R, Carmona C. Characterization of carbohydrates of adult Echinococcus granulosus by lectin-binding analysis. J Parasitol 2003; 89: 57-61.
  107. Sharafi SM, Rafiei R, Rafiei R, Hadipour M, Shirzad H, Khanahmad H, et al. A Nonglycosylated 27 kDa molecule as common antigen between human breast cancer and Echinococcus granulosus hydatid cyst wall. Adv Breast Cancer Res 2016; 5: 90.
  108. Sharafi SM, Shirzad H, Khanahmad H, Ataei B, Darani HY. Monoclonal antibodies production against a 40KDa band of hydatid cyst fluid. Recent Pat Biotechnol 2018; 12: 57-64.
  109. Guzmán EA, Johnson JD, Linley PA, Gunasekera SE, Wright AE. A novel activity from an old compound: Manzamine A reduces the metastatic potential of AsPC-1 pancreatic cancer cells and sensitizes them to TRAIL-induced apoptosis. Invest New Drugs 2011; 29: 777-85.
  110. Stein C, LaRocca R, Thomas R, McAtee N, Myers CE. Suramin: an anticancer drug with a unique mechanism of action. J Clin Oncol 1989; 7: 499-508.
  111. McGeary RP, Bennett AJ, Tran QB, Cosgrove KL, Ross BP. Suramin: clinical uses and structure-activity relationships. Mini Rev Med Chem 2008; 8: 1384-94.
  112. Kumar N, Singh R, Rawat DS. Tetraoxanes: synthetic and medicinal chemistry perspective. Med Res Rev 2012; 32: 581-610.
  113. 1Chen HH, Zhou HJ, Fang X. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro. Pharmacol Res 2003; 48: 231-6.
  114. Van Huijsduijnen RH, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G, et al. Anticancer properties of distinct antimalarial drug classes. PLoS One 2013; 8: e82962.
  115. Yousofi Darani H, Soozangar N, Khorami S, Taji F, Yousofi M, Shirzad H. Hydatid cyst protoscolices induce cell death in WEHI-164 fibrosarcoma cells and inhibit the proliferation of baby hamster kidney fibroblasts in vitro. J Parasitol Res 2012; 2012: 304183.
  116. Sharma N, Thomas S, Golden EB, Hofman FM, Chen TC, Petasis NA, et al. Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett 2012; 326: 143-54.
  117. Dou Q, Chen HN, Wang K, Yuan K, Lei Y, Li K, et al. Ivermectin induces cytostatic autophagy by blocking the PAK1/Akt axis in breast cancer. Cancer Res 2016; 76: 4457-69.
  118. Diao H, Cheng N, Zhao Y, Xu H, Dong H, Thamm DH, et al. Ivermectin inhibits canine mammary tumor growth by regulating cell cycle progression and WNT signaling. BMC Vet Res 2019; 15: 276.
  119. Intuyod K, Hahnvajanawong C, Pinlaor P, Pinlaor S. Anti-parasitic drug ivermectin exhibits potent anticancer activity against gemcitabine-resistant cholangiocarcinoma in vitro. Anticancer Res 2019; 39: 4837-43.
  120. Nishio M, Sugimachi K, Goto H, Wang J, Morikawa T, Miyachi Y, et al. Dysregulated YAP1/TAZ and TGF-b signaling mediate hepatocarcinogenesis in Mob1a/1b-deficient mice. Proc Natl Acad Sci U S A 2016; 113: E71-80.
  121. Liu Y, Fang S, Sun Q, Liu B. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress. Biochem Biophys Res Commun 2016; 480: 415-21.
  122. Liu J, Liang H, Chen C, Wang X, Qu F, Wang H, et al. Ivermectin induces autophagy-mediated cell death through the AKT/mTOR signaling pathway in glioma cells. Biosci Rep 2019; 39: BSR20192489.
  123. Kircik LH, Del Rosso JQ, Layton AM, Schauber J. Over 25 years of clinical experience with ivermectin: an overview of safety for an increasing number of indications. J Drugs Dermatol 2016; 15: 325-32.
  124. Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif 2019; 52: e12543.
  125. Hashimoto H, Messerli SM, Sudo T, Maruta H. Ivermectin inactivates the kinase PAK1 and blocks the PAK1-dependent growth of human ovarian cancer and NF2 tumor cell lines. Drug Discov Ther 2009; 3: 243-6.
  126. Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M, Hanash SM, et al. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. Proc Natl Acad Sci U S A 2017; 114: E7301-E10.
  127. Zhang X, Qin T, Zhu Z, Hong F, Xu Y, Zhang X, et al. Ivermectin augments the in vitro and in vivo efficacy of cisplatin in epithelial ovarian cancer by suppressing Akt/mTOR signaling. Am J Med Sci 2020; 359: 123-9.
  128. Sharmeen S, Skrtic M, Sukhai MA, Hurren R, Gronda M, Wang X, et al. The antiparasitic agent ivermectin induces chloride-dependent membrane hyperpolarization and cell death in leukemia cells. Blood 2010; 116: 3593-603.
  129. Nambara S, Masuda T, Nishio M, Kuramitsu S, Tobo T, Ogawa Y, et al. Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget 2017; 8: 107666-77.
  130. Melotti A, Mas C, Kuciak M, Lorente‐Trigos A, Borges I, Ruiz i Altaba A. The river blindness drug I vermectin and related macrocyclic lactones inhibit WNT‐TCF pathway responses in human cancer. EMBO Mol Med 2014; 6: 1263-78.
  131. Zhu M, Li Y, Zhou Z. Antibiotic ivermectin preferentially targets renal cancer through inducing mitochondrial dysfunction and oxidative damage. Biochem Biophys Res Commun 2017; 492: 373-8.
  132. Nappi L, Aguda AH, Al Nakouzi N, Lelj-Garolla B, Beraldi E, Lallous N, et al. Ivermectin inhibits HSP27 and potentiates efficacy of oncogene targeting in tumor models. J Clin Invest 2020; 130: 699-714.
  133. Gallardo F, Mariamé B, Gence R, Tilkin-Mariamé AF. Macrocyclic lactones inhibit nasopharyngeal carcinoma cells proliferation through PAK1 inhibition and reduce in vivo tumor growth. Drug Des Devel Ther 2018; 12: 2805-14.
  134. Gallardo F, Teiti I, Rochaix P, Demilly E, Jullien D, Mariamé B, et al. Macrocyclic lactones block melanoma growth, metastases development and potentiate activity of anti-BRAF V600 inhibitors. Clinical Skin Cancer 2016; 1: 4-14. e3.
  135. Deng F, Xu Q, Long J, Xie H. Suppressing ROS‐TFE3‐dependent autophagy enhances ivermectin‐induced apoptosis in human melanoma cells. J Cel Biochem 2018. doi: 10.1002/jcb.27490.
  136. Luque-Ortega JR, Cruz LJ, Albericio F, Rivas L. The antitumoral depsipeptide IB-01212 kills Leishmania through an apoptosis-like process involving intracellular targets. Mol Pharm 2010; 7: 1608-17.
  137. Marek M, Kannan S, Hauser AT, Mourão MM, Caby S, Cura V, et al. Structural basis for the inhibition of histone deacetylase 8 (HDAC8), a key epigenetic player in the blood fluke Schistosoma mansoni. PLoS Pathog 2013; 9: e1003645.
  138. Sumanadasa SD, Goodman CD, Lucke AJ, Skinner-Adams T, Sahama I, Haque A, et al. Antimalarial activity of the anticancer histone deacetylase inhibitor SB939. Antimicrob Agents Chemother 2012; 56: 3849-56.
  139. Sithranga Boopathy N, Kathiresan K. Anticancer drugs from marine flora: an overview. J Oncol 2010; 2010: 214186.
  140. Hemer S, Brehm K. In vitro efficacy of the anticancer drug imatinib on Echinococcus multilocularis larvae. Int J Antimicrob Agents 2012; 40: 458-62.
  141. Beckmann S, Grevelding C. Imatinib has a fatal impact on morphology, pairing stability and survival of adult Schistosoma mansoni in vitro. Int J Parasitol 2010; 40: 521-6.
  142. Kiara SM, Okombo J, Masseno V, Mwai L, Ochola I, Borrmann S, et al. In vitro activity of antifolate and polymorphism in dihydrofolate reductase of Plasmodium falciparum isolates from the Kenyan coast: emergence of parasites with Ile-164-Leu mutation. Antimicrob Agents Chemother 2009; 53: 3793-8.
  143. Kaur S, Sachdeva H, Dhuria S, Sharma M, Kaur T. Antileishmanial effect of cisplatin against murine visceral leishmaniasis. Parasitol Int 2010; 59: 62-9.
  144. Tavares J, Ouaissi M, Ouaissi A, Cordeiro-da-Silva A. Characterization of the anti-Leishmania effect induced by cisplatin, an anticancer drug. Acta Trop 2007; 103: 133-41.
  145. Navarro M, Gabbiani C, Messori L, Gambino D. Metal-based drugs for malaria, trypanosomiasis and leishmaniasis: recent achievements and perspectives. Drug Discov 2010; 15: 1070-8.
  146. Bonse S, Richards JM, Ross SA, Lowe G, Krauth-Siegel RL. (2, 2 ‘: 6 ‘, 2 ‘‘-Terpyridine) platinum (II) Complexes Are Irreversible Inhibitors of Trypanosoma cruzi Trypanothione Reductase But Not of Human Glutathione Reductase. J Med Chem 2000; 43: 4812-21.
  147. Alger HM, Williams DL. The disulfide redox system of Schistosoma mansoni and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. Mol Biochem Parasitol 2002; 121: 129-39.
  148. Sannella AR, Casini A, Gabbiani C, Messori L, Bilia AR, Vincieri FF, et al. New uses for old drugs. Auranofin, a clinically established antiarthritic metallodrug, exhibits potent antimalarial effects in vitro: Mechanistic and pharmacological implications. FEBS Lett 2008; 582: 844-7.