<i>Aedes (Stegomyia) aegypti</i> (Linnaeus, 1762) ve <i>Aedes albopictus</i> (Skuse, 1894) (Diptera: Culicidae) Larvalarına Karşı Bazı Aromatik Tiyosemikarbazon ve Metal Komplekslerinin [Ni (II), Cu (II), Co (II)] Larvasidal Aktivitesi
PDF
Atıf
Paylaş
Talep
P: 39-44
Mart 2024

Aedes (Stegomyia) aegypti (Linnaeus, 1762) ve Aedes albopictus (Skuse, 1894) (Diptera: Culicidae) Larvalarına Karşı Bazı Aromatik Tiyosemikarbazon ve Metal Komplekslerinin [Ni (II), Cu (II), Co (II)] Larvasidal Aktivitesi

Turkiye Parazitol Derg 2024;48(1):39-44
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 18.01.2023
Kabul Tarihi: 25.01.2024
Yayın Tarihi: 05.03.2024
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Bir dizi aromatik tiyosemikarbazon-oksim [TP1 ve TP2] türevleri ve bunların Ni(II), Cu(II) ve Co(II) kompleksleri sentezlenmiş ve Aedes aegypti ve Aedes albopictus larvalarına karşı etkinlikleri değerlendirilmiştir. Bu maddelerin Aedes albopictus larvalarındaki etkinlikleri ilk kez belirlenmiştir.

Yöntemler:

Laboratuvar kolonisi oluşturulmuş Aedes aegypti ve Aedes albopictus larvaları maddelerin larvisidal etkinlikleri için test edilmiştir. Yirmi dört ve 48 saat sonar larval ölüm oranları kaydedilmiş ve LC50 değerleri hesaplanmıştır. Çalışma Aydın Adnan Menderes Üniversitesi’nde 2021 yılında gerçekleştirilmiştir.

Bulgular:

Aedes aegypti için, TP1 ve Co(II) komplekslerinden 24 ve 48 saat için elde edilen LC50 değerleri sırayla 15,41, 9,75, μg/mL iken TP2 ve Co(II) kompleksleri için elde edilen değerler 21,62, 20,50 μg/mL olarak belirlenmiştir. Aedes albopictus için, TP1 ve Co(II) komplekslerinden 24 ve 48 saat için elde edilen LC50 değerleri sırayla 12,06, 8,75 μg/mL iken TP2 ve Co(II) kompleksleri için elde edilen değerler 32,87, 25,48 μg/mL olarak belirlenmiştir.

Sonuç:

Hem TP1 hem de TP2 bileşikleri ve bunların Co(II) kompleksleri, larvalara karşı yüksek etkinlik göstermiştir; tiyosemikarbazon türevlerindeki C=S gruplarının aktivite göstermede etkili olduğu söylenebilir ve bu nedenle bu bileşenlerin etkin hale getirilmesi için çalışmalara devam edilmelidir.

References

1
Becker N, Petric D, Zgomba M, Boase C, Madon M, Dahl C, Kaiser A. Mosquitoes and Their Control. Springer Science & Business Media. Springer Berlin, Heidelberg, 2010 pp. 577.
2
World Health Organization. Dengue and Severe Dengue. Available from: https://www.who.int/news-room/fact-sheets/detail/dengue-and-severe-dengue (accessed on 10 June 2021).
3
Semenza JC, Suk JE. Vector-borne diseases and climate change: a European perspective. FEMS Microbiol Lett 2008; 36: fnx244.
4
Weetman D, Kamgang B, Badolo A, Moyes CL, Shearer FM, Coulibaly M, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health 2018; 15: 220.
5
Almeida AP, Goncalves YM, Novo MT, Sousa CA, Melim M, Gracio AJ. Vector monitoring of Aedes aegypti in the Autonomous Region of Madeira, Portugal. Euro Surveill 2007; 12: E071115.
6
Iunicheva IuV, Riabova TE, Markovich NIa, Bezzhonova OV, Ganushkina LA, Semenov VB, et al. [First evidence for breeding Aedes aegypti L in the area of Greater Sochi and in some towns of Abkhasia]. Med Parazitol (Mosk) 2008; 40-3. Russian.
7
Scholte E, Den Hartog W, Dik M, Schoelitsz B, Brook M, Schaffner Introduction and control of three invasive mosquito species in the Netherlands. Euro Surveill 2010; 15: 19710.
8
Akiner MM, Demirci B, Babuadze G, Robert V, Schaffner F. Spread of the invasive mosquitoes Aedes aegypti and Aedes albopictus in the Black Sea region increases risk of chikungunya, dengue, and Zika outbreaks in Europe. PLoS Negl Trop Dis 2016; 10: e0004664.
9
Ponlawat A, Harrington LC. Blood feeding patterns of Aedes aegypti and Aedes albopictus in Thailand. J Med Entomol 2005; 42: 844-9.
10
Bonizzoni M, Gasperi G, Chen X, James AA. The invasive mosquito species Aedes albopictus: current knowledge and future perspectives. Trends Parasitol 2013; 29: 460-8.
11
Kraemer MUG, Sinka ME, Duda KA, Mylne AQ, Shearer FM, Barker CM, et al. The global distribution of the arbovirus vectors Aedes aegypti and Aedes albopictus. Elife 2015; 4: 08347.
12
Oter K, Gunay F, Tuzer E, Linton YM, Bellini R, Alten B. First record of Stegomyia albopicta in Turkey determined by active ovitrap surveillance and DNA barcoding. Vector Borne Zoonotic Dis 2013; 13: 753-61.
13
Akıner MM, Öztürk M, Başer AB, Günay F, Hacıoğlu S, Brinkmann A, et al. Arboviral screening of invasive Aedes species in northeastern Turkey: West Nile virus circulation and detection of insect-only viruses. PLoS Negl Trop Dis 2019; 13: e0007334.
14
Demirci B, Bedir H, Öztürk M, Akıner MM. Status of the invasive mosquito species Aedes aegypti (L., 1762) and Aedes albopictus (Skuse, 1895) (Diptera: Culicidae) in Turkey. Türk Entomol Derg 2021; 45: 279-92.
15
Yavaşoğlu Sİ. First report on mild insecticide resistance in newly established Aegean Aedes albopictus populations of Turkey. Turkish Journal of Zoology 2021; 45: 223-34.
16
Moyes CL, Vontas J, Martins AJ, Ng LC, Koou SY, Dusfour I, et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl Trop Dis 2017; 11: e0005625.
17
Shah AA, Aslam S, Akbar M, Ahmad A, Khan WU, Yasin NA, et al. Combined effect of Bacillus fortis IAGS 223 and zinc oxide nanoparticles to alleviate cadmium phytotoxicity in Cucumis melo. Plant Physiol Biochem 2021; 158: 1-12.
18
Hussain I, Ali A. Exploring the Pharmacological Activities of Hydrazone Derivatives: A Review. J Phytochem Biochem 2017; 1: 104-12.
19
Dutkiewiez G, Kubicki M, Narayana B, Samshuddin S, Yathirajan HS. Synthesis of two new Schiff base hydrazones derived from biphenyl-4-carbohydrazide. Journal of Chemical Crystallography 2011; 41: 1442-6.
20
Shakdofa MME, Shtaiwia MH, Morsy N, Abdel-rassel TMA. Metal complexes of hydrazones and their biological, analytical and catalytic applications: A Review. Main Group Chemistry 2014; 13: 187-218.
21
Asif M, Husain A. Analgesic, anti-inflammatory and antiplatelet profile of hydrazones containing synthetic molecules. Journal of Applied Chemistry 2013; 247203: 1-7.
22
Cassell GH, Mekalanos J. Development of Antimicrobial Agents in the Era of New and Reemerging Infectious Diseases and Increasing Antibiotic Resistance. JAMA 2001; 285: 601-5.
23
Pandey A, Dewangan D, Verma S, Mishra A, Dubey RD. Synthesis of Schiff Bases of 2-Amino-5-Aryl-1, 3,4-Thiadiazole and Its Analgesic, anti-Inflammatory, anti-Bacterial and antiTubercular Activity. Inter J Chem Tech Res 2011; 3: 178-84.
24
Popiołek L. Hydrazide-Hydrazones as Potential Antimicrobial Agents: Overview of the Literature Since 2010. Med Chem Res 2017; 26: 287-301.
25
Ugwu NF, Anarado CJO, Ibeji CU, Okpareke OC, Ezeorah CJ, Okagu OD, et al. Synthesis, Spectroscopic, Antimicrobial Activity and Computational Studies of Some Homoleptic and Heteroleptic Metal (II) Complexes of 2-Furoic Acid Hydrazone. Chemistry Select 2019; 4: 11206-12.
26
Nirmal R, Prakash C, Meenakshi K, Shanmugapandiyan P. Synthesis Pharmacological Evaluation of Novel Schiff Base Analogues of 3-(4-Amino) Phenylimino) 5-Fluoroindolin-2-one. J Young Pharm 2010; 2: 162-8.
27
Böger M, Dürr D, Gsell L, Hall RG, Karrer F, Kristiansen O, et al. Synthesis and structure-activity relationships of benzophenone hydrazone derivatives with insecticidal activity. Pest Manag Sci 2001; 57: 191-202.
28
Liu M, Wang Y, Wangyang WZ, Liu F, Cui YL, Duan YS, et al. Design, synthesis, and insecticidal activities of phthalamides containing a hydrazone substructure. J Agric Food Chem 2010; 58: 6858-63.
29
Tabanca N, Ali A, Bernier UR, Khan IA, Kocyigit‐Kaymakcioglu B, Oruç EE, et al. Biting deterrence and insecticidal activity of hydrazide‐hydrazones and their corresponding 3‐acetyl‐2, 5‐disubstituted‐2, 3‐dihydro‐1, 3, 4‐oxadiazoles against Aedes aegypti. Pest Manag Sci 2013; 69: 703-8.
30
Akdağ K, Kocyigit-Kaymakcioglu B, Tabanca N, Ali A, Estep A, Becnel JJ, Khan I. Synthesis and larvicidal and adult topical activity of some hydrazide-hydrazone derivatives against Aedes aegypti. Marmara Pharmaceutical Journal 2014; 18: 120-5.
31
Weetman DB, Kamgang A, Badolo CL, Moyes FM, Shearer M, Coulibaly J, et al. Aedes mosquitoes and Aedes-borne arboviruses in Africa: current and future threats. Int J Environ Res Public Health 2018; 15: 220-5.
32
Babahan I, Anıl H, Sarıkavaklı N. Synthesis of novel tetraoxime derivative with hydrazone side groups and its metal complexes. Turkish Journal of Chemistry 2011; 35: 613-24.
33
Babahan I, Özmen A, Aslan K. Synthesis and use of dioxime ligands for treatment of leukemia and colon cancer cells. Applied Organometallic Chemistry 2017; 31: e3752.
34
Anarado CJO, Iziga CG, Ibeji CU, Babahan-Bircan I, Coban B, Cömert F, et al. Synthesis and Characterization of 4-amino-N’-[(1E)-1-(2-hydroxy-6-methyl-4-oxo-4H-pyran-3-yl) ethylidene] benzohydrazide and its Cu (II), Ni (II), Zn (II) and Mn (II) Complexes. Molekul 2023; 18: 307-20.
35
Bursalı F, Yavaşer Boncooğlu R, Fırıncı R. Synthesis, characterization, larvicidal and antioxidant activities of copper(II) complexes with barbiturate derivatives. Monatsh Chem 2023; 154: 793-9.
36
World Health Organization. Guidelines for Laboratory and Field Testing of Mosquito Larvicides; World Health Organization: Geneva, Switzerland, 2005; pp. 1-41.
37
Abbott WS. A method of computing the effectiveness of an insecticide. J Am Mosq Control Assoc 1925; 18: 265-7.
38
Rayms-Keller A, Olson K, McGaw M, Oray C, Carlson J, Beaty B. Effect of Heavy Metals on Aedes aegypti (Diptera: Culicidae) Larvae. Ecotoxicol Environ Saf 1998; 39: 41-7.
39
Rochelly DSM, Wanderli PTW, Ana MBB. Determination of the larvicidal activity of benzoyl thiosemicarbazone and its Ni (II) complex against Aedes aegypti and Anopheles darlingi larvae in Amazonas, Brazil. Journal of Entomology and Nematology 2018; 10: 37-42.
40
Kaplancikli A, Altintop D, Ozdemir A, Turan-Zitouni G, Khan GSI, Tabanca N. Synthesis and biological evaluation of some hydrazone derivatives as anti-inflammatory agents. Letters in Drug Design & Discovery 2012; 9: 310-5.
41
Burfield T, Reekie SL. Mosquitoes, malaria, and essential oils. International Journal of Aromatherapy 2005; 15: 30-41.
2024 ©️ Galenos Publishing House