İran’ın Buşehr Eyaletindeki Deniz Ascidianlarının (Tunikatlar; Ascidiacea) Anti-<i>Trichmonas vajinalis</i> Aktivitesi
PDF
Atıf
Paylaş
Talep
P: 21-26
Mart 2024

İran’ın Buşehr Eyaletindeki Deniz Ascidianlarının (Tunikatlar; Ascidiacea) Anti-Trichmonas vajinalis Aktivitesi

Turkiye Parazitol Derg 2024;48(1):21-26
Bilgi mevcut değil.
Bilgi mevcut değil
Alındığı Tarih: 16.01.2023
Kabul Tarihi: 25.12.2023
Yayın Tarihi: 05.03.2024
PDF
Atıf
Paylaş
Talep

ÖZET

Amaç:

Mevcut araştırmanın amacı, deniz ascidian tunikatlarından izole edilen bileşiklerin Trichomonas vajinalis üzerindeki antiparazit etkilerini değerlendirmektir.

Yöntemler:

Ascidian tunikatlar toplandıktan sonra küçük parçalar halinde kesildi, dondurularak kurutuldu ve toz haline getirildi. Nihai malzeme, çift damıtılmış su, etanol, n-heksan ve diklorometan içerisinde ekstraksiyona tabi tutuldu. Ekstraktları parçalara ayırmak ve en biyoaktif bileşiği belirlemek için silika jel kolon kromatografisi ve GC-M/S analizi kullanıldı.

Bulgular:

Etanol ekstraktının silika jel kolon kromatografisinin 18. fraksiyonu T. vajinalis’e karşı en etkili olanıydı. Fraksiyon 18 için ilgili IC50, CC50 ve SI değerleri 28,62 μg/mL, ˃800 μg/mL ve ˃27,95 idi. Bu fraksiyonun GC-M/S analizi, vero hücrelerine karşı toksisitesi yalnızca %10,15 olan önemli bir fenolik bileşiği (2,4-bis (1,1-dimetil etil) tanımladı.

Sonuç:

T. vajinalis üzerinde güçlü öldürücü etkiye sahip olan fenol-2,4-bis (1,1-dimetiletil) içeren etanolik fraksiyon antiparazit ilaç adayı olarak değerlendirilebilir.

References

1
Secor WE, Meites E, Starr MC, Workowski KA. Neglected parasitic infections in the United States: trichomoniasis. Am J Trop Med Hyg 2014; 90: 800-4.
2
Edwards T, Burke P, Smalley H, Hobbs G. Trichomonas vaginalis: Clinical relevance, pathogenicity and diagnosis. Crit Rev Microbiol 2016; 42: 406-17.
3
Kissinger P. Trichomonas vaginalis: a review of epidemiologic, clinical and treatment issues. BMC Infect Dis 2015; 15: 307.
4
World Health Organization. 2012. Global incidence and prevalence of selected curable sexually transmitted infections. World Health Organization, Dept. of Reproductive Health and Research, available from: http://www.who.int/reproductivehealth/publications/rtis/stisestimates/en/index.html
5
Vais RD, Heli H, Sattarahmady N, Barazesh A. A novel and ultrasensitive label-free electrochemical DNA biosensor for Trichomonas vaginalis detection based on a nanostructured film of poly (ortho-aminophenol). Synthetic Metals 2022; 287: 117082.
6
Kusdian G, Gould SB. The biology of Trichomonas vaginalis in the light of urogenital tract infection. Mol Biochem Parasitol 2014; 198: 92-9.
7
Nazari N, Zangeneh M, Moradi F, Bozorgomid A. Prevalence of trichomoniasis among women in kermanshah, iran. Iran Red Crescent Med J 2015; 17: e23617.
8
Nourian A, Shabani N, Fazaeli A, Mousavinasab SN. Prevalence of Trichomonas vaginalis in pregnant women in Zanjan, Northwest of Iran. Jundishapur Journal of Microbiology 2013; 6: e7258.
9
Rezaeian M, Vatanshenassan M, Rezaie S, Mohebali M, Niromand N, Niyyati M, et al. Prevalence of Trichomonas vaginalis using parasitological methods in Tehran. Iranian Journal of Parasitology 2009; 4: 43-7.
10
Bafghi AF, Aflatoonian A, Barzegar K, Ghafourzadeh M, Nabipour S. Frequency distribution of trichomoniasis in pregnant women referred to health centers of Ardakan, Meibod and Yazd, Iran. Jundishapur Journal of Microbiology 2009; 2: 132-9.
11
Arbabi M, Fakhrieh Z, Delavari M, Abdoli A. Prevalence of Trichomonas vaginalis infection in Kashan city, Iran (2012-2013). Iran J Reprod Med 2014; 12: 507-12.
12
Matini M, Rezaie S, Mohebali M, Maghsood A, Rabiee S, Fallah M, et al. Prevalence of Trichomonas vaginalis Infection in Hamadan City, Western Iran. Iran J Parasitol 2012; 7: 67-72.
13
Blaha C, Duchêne M, Aspöck H, Walochnik J. In vitro activity of hexadecylphosphocholine (miltefosine) against metronidazole-resistant and -susceptible strains of Trichomonas vaginalis. J Antimicrob Chemother 2006; 57: 273-8.
14
Upcroft JA, Dunn LA, Wal T, Tabrizi S, Delgadillo-Correa MG, Johnson PJ, et al. Metronidazole resistance in Trichomonas vaginalis from highland women in Papua New Guinea. Sex Health 2009; 6: 334-8.
15
Krashin JW, Koumans EH, Bradshaw-Sydnor AC, Braxton JR, Evan Secor W, Sawyer MK, et al. Trichomonas vaginalis prevalence, incidence, risk factors and antibiotic-resistance in an adolescent population. Sex Transm Dis 2010; 37: 440-4.
16
Gehrig S, Efferth T. Development of drug resistance in Trichomonas vaginalis and its overcoming with natural products. The Open Bioactive Compounds Journal 2009; 2: 21-8.
17
Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol 2010; 21: 808-18.
18
Moo-Puc R, Robledo D, Freile-Pelegrin Y. Evaluation of selected tropical seaweeds for in vitro anti-trichomonal activity. J Ethnopharmacol 2008; 120: 92-7.
19
Cantillo-Ciau Z, Moo-Puc R, Quijano L, Freile-Pelegrín Y. The tropical brown alga Lobophora variegata: a source of antiprotozoal compounds. Mar Drugs 2010; 8: 1292-304.
20
Washida K, Koyama T, Yamada K, Kita M, Uemura D. Karatungiols A and B, two novel antimicrobial polyol compounds, from the symbiotic marine dinoflagellate Amphidinium sp. Tetrahedron Lett 2006; 47: 2521-5.
21
Satoh N, Rokhsar D, Nishikawa T. Chordate evolution and the three-phylum system. Proc Biol Sci 2014; 281: 20141729.
22
Palanisamy SK, Rajendran NM, Marino A. Natural Products Diversity of Marine Ascidians (Tunicates; Ascidiacea) and Successful Drugs in Clinical Development. Nat Prod Bioprospect 2017; 7: 1-111.
23
Casertano M, Menna M, Imperatore C. The Ascidian-Derived Metabolites with Antimicrobial Properties. Antibiotics (Basel) 2020; 9: 510.
24
George J, Sabapathi SN. Cellulose nanocrystals: synthesis, functional properties, and applications. Nanotechnol Sci Appl 2015; 8: 45-54.
25
Gerwick WH, Fenner AM. Drug discovery from marine microbes. Microb Ecol 2013; 65: 800-6.
26
Wu Wu C, Wang Y, Yang Y. Pestalotiopsis Diversity: Species, Dispositions, Secondary Metabolites, and Bioactivities. Molecules 2022; 27: 8088.
27
Ruprich J, Prout A, Dickson J, Younglove B, Nolan L, Baxi K, et al. Design, synthesis and biological testing of cyclohexenone derivatives of combretastatin-A4. Letters in Drug Design & Discovery 2007; 4: 144-8.
28
AbdElal SN. Synthesis of some new cyclohexene carboxylic acid derivatives as potent anti-tumor agents. J Chem Pharm Res 2013; 5: 168-77.
29
Roumy V, Fabre N, Portet B, Bourdy G, Acebey L, Vigor C, et al. Four anti-protozoal and anti-bacterial compounds from Tapirira guianensis. Phytochemistry 2009; 70: 305-11.
30
Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. Rsc Advances 2015; 5: 15233-66.
31
Qian X, Liang GB, Feng D, Fisher M, Crumley T, Rattray S, et al. Synthesis and SAR studies of diarylpyrrole anticoccidial agents. Bioorg Med Chem Lett 2006; 16: 2817-21.
32
Zhao S, Zhang X, Wei P, Su X, Zhao L, Wu M, et al. Design, synthesis and evaluation of aromatic heterocyclic derivatives as potent antifungal agents. Eur J Med Chem 2017; 137: 96-107.
33
Gilleran JA, Yu X, Blayney AJ, Bencivenga AF, Na B, Augeri DJ, et al. Benzothiazolyl and Benzoxazolyl Hydrazones Function as Zinc Metallochaperones to Reactivate Mutant p53. J Med Chem 2021; 64: 2024-45.
34
Moorkoth S, Joseph A, Srinivasan KK, Kutty G. Synthesis and evaluation of biological activity of imidazolidinone analysis of 2-aminochromone. Int J Pharm Biosci Technol 2013; 1: 130-41.
35
Demir B, Cerkez I, Worley SD, Broughton RM, Huang TS. N-Halamine-modified antimicrobial polypropylene nonwoven fabrics for use against airborne bacteria. ACS Appl Mater Interfaces 2015;7: 1752-7.
36
Shang XF, Morris-Natschke SL, Yang GZ, Liu YQ, Guo X, Xu XS, et al. Biologically active quinoline and quinazoline alkaloids part II. Med Res Rev 2018; 38: 1614-60.
37
Varsha KK, Devendra L, Shilpa G, Priya S, Pandey A, Nampoothiri KM. 2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp. Int J Food Microbiol 2015; 211: 44-50.
38
Machado M, Dinis AM, Salgueiro L, Cavaleiro C, Custódio JB, Sousa Mdo C. Anti-Giardia activity of phenolic-rich essential oils: effects of Thymbra capitata, Origanum virens, Thymus zygis subsp. sylvestris, and Lippia graveolens on trophozoites growth, viability, adherence, and ultrastructure. Parasitol Res 2010; 106: 1205-15.
39
Cunha F, Tintino SR, Figueredo F, Barros L, Duarte AE, Vega Gomez MC, et al. HPLC-DAD phenolic profile, cytotoxic and anti-kinetoplastidae activity of Melissa officinalis. Pharm Biol 2016; 54: 1664-70.
40
Calixto Júnior JT, de Morais SM, Gomez CV, Molas CC, Rolon M, Boligon AA, et al. Phenolic composition and antiparasitic activity of plants from the Brazilian Northeast “Cerrado”. Saudi J Biol Sci 2016; 23: 434-40.
41
Ezz Eldin HM, Badawy AF. In vitro anti-Trichomonas vaginalis activity of Pistacia lentiscus mastic and Ocimum basilicum essential oil. J Parasit Dis 2015; 39: 465-73.
2024 ©️ Galenos Publishing House