Özgün Araştırma

86

Increasing the Sensitivity of *Leishmania* RNA Virus 2 (LRV2) Detection with a Modification in cDNA Synthesis

Leishmania RNA Virüs 2 (LRV2) Saptanmasında cDNA Sentezindeki Bir Modifikasyon ile Hassasiyetin Artırılması

Muhammed Nalçacı¹, Mehmet Karakuş², Yusuf Özbel³, Ahmet Özbilgin⁴, Seray Töz³

¹Ege University Graduate School of Natural and Applied Sciences, Department of Biology, İzmir, Turkey ²University of Health Sciences Turkey Hamidiye Faculty of Medicine, Department of Medical Microbiology, İstanbul, Turkey

³Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkey ⁴Celal Bayar University Faculty of Medicine, Department of Parasitology, Manisa, Turkey

Cite this article as: Nalçacı M, Karakuş M, Özbel Y, Özbilgin A, Töz S. Increasing the Sensitivity of *Leishmania* RNA Virus 2 (LRV2) Detection with a Modification in cDNA Synthesis. Turkiye Parazitol Derg 2022;46(2):86-90.

ABSTRACT

Objective: *Leishmania* RNA virus was detected the first time in the New World *Leishmania* species. Recent studies were also showed the presence of *Leishmania* RNA virus 2 (LRV2) in Old Word *Leishmania* species including Turkish *L. major* and *L. tropica* isolates. This study aimed to increase the sensitivity of qPCR with a modification in the denaturation step of cDNA preparation protocol.

Methods: In this study, LRV2+ three *L. major*, two *L. tropica* strains and *L. major* control strain (MHOM/SU/73/5-ASKH) were included. Total RNA isolation was done using different numbers of *Leishmania* promastigotes (10^8 , 10^5 and 10^3). Before cDNA synthesis, samples were denatured at 95 °C for 2 min, as a modification of the kit procedure. qPCR was undertaken using 0.5 mM primers (LRV F-HR/LRV R-HR) diluted in SYBR Green Master mix.

Results: We observed lower Ct values in amplicons with the modified version than with the classical kit protocol for cDNA synthesis, in all of the strains used in the study. The addition of pre-denaturation step at 95 °C showed lower Ct values meaning the sensitivity increased. Different parasite dilutions showed similar results.

Conclusion: It is important to increase the sensitivity especially with the aim for detecting LRV in clinical samples obtained from patients probably have less number of parasites. The presence and burden of the virus can help to understand the relationship between the clinical findings and the pathogenicity of the parasite which may lead to changes in the course of treatment. **Keywords:** *Leishmania, Leishmania* RNA virus 2, LRV2, cDNA, gPCR

ÖΖ

Amaç: Leishmania RNA virüsü, ilk olarak yeni dünya Leishmania türlerinde tespit edilmiştir. Son çalışmalar, Türkiye'deki L. major, L. tropica izolatları dahil olmak üzere, eski dünya Leishmania türlerinde de Leishmania RNA virüsü 2'nin (LRV2) varlığını göstermiştir. Bu çalışmada LRV2'nin tespiti için cDNA hazırlama protokolünün denatürasyon aşamasında yapılan bir modifikasyon ile qPCR'nin duyarlılığının artırılması amaçlanmıştır.

Yöntemler: Bu çalışmada, LRV2+ 3 *L. major*, 2 *L. tropica* ve kontrol olarak *L. major* (MHOM/SU/73/5- ASKH) suşları kullanılmıştır. Total RNA izolasyonu 10⁸, 10⁵ ve 10³ sayılarına ulaşan *Leishmania* promastigotları kullanılmıştır. cDNA sentezinden önce numuneler, kit prosedüründen farklı olarak 95 °C'de 2 dakika denatüre edilmiştir. qPCR, SYBR Green Master karışımında seyreltilmiş 0,5 mM primerler (LRV F-HR/LRV R-HR) kullanılarak yapılmıştır.

Bulgular: Klasik kit prosedüründen farklı olarak 95 °C'de ön denatürasyon adımının eklenmesi, duyarlılığın arttığını gösteren daha düşük Ct değerleri ortaya çıkarmıştır. Farklı parazit dilüsyonları ile de benzer sonuçlar gözlenmiştir.

Sonuç: Özellikle hastalardan elde edilen klinik örneklerde muhtemelen daha az sayıda parazit bulunması nedeniyle, LRV'nin saptanabilmesi amacıyla duyarlılığın artırılması önemlidir. Virüsün varlığı ve yükü, klinik bulgular ile parazitin patojenliği arasındaki ilişkiyi anlamaya yardımcı olabilecek ve bu da tedavi aşamasında değişikliklere yol açabilecektir.

Anahtar Kelimeler: Leishmania, Leishmania RNA virus 2, LRV2, cDNA, qPCR

Received/Geliş Tarihi: 07.12.2021 Accepted/Kabul Tarihi: 10.03.2022

Address for Correspondence/Yazar Adresi: Muhammed Nalçacı, Ege University Graduate School of Natural and Applied Sciences, Department of Biology, İzmir, Turkey

Phone/Tel: +90 555 677 48 39 E-mail/E-Posta: muhammednalcaci@gmail.com ORCID ID: orcid.org/0000-0002-9265-2887

INTRODUCTION

Leishmaniasis is a vector-borne disease and endemic in more than 98 countries with the main clinical forms as cutaneous, mucocutaneous and visceral leishmaniasis (1,2). As an estimation, 350 million people are at risk of leishmaniasis globally (2). As agents, more than 20 *Leishmania* spp. protozoan parasites in *Leishmania* genus are transmitted by infected female sand flies (3,4). Cutaneous leishmaniasis (CL), the most common clinical form, is endemic in New and Old World countries, with an estimated one million new cases each year. CL is mainly caused by *L. tropica* and *L. major*, and less frequently by *L. infantum* and *L. aethiopica* in the Old World. Also, localized CL cases caused by *L. donovani* have been reported (5,6). Turkey is one of the 12 countries including Syria, and Iran, as being high-burden (>2.500/year cases) for CL in 2016 according to World Health Organization (4,7).

In Turkey, CL is endemic in Southeast Anatolia and the East part of the Mediterranean region, and most of the cases (96%) were reported from Sanlıurfa, Adana, Osmaniye, Hatay, Diyarbakır, İçel and Kahramanmaraş. In recent years, CL cases were also reported in the areas where known as non-endemic possibly due to migrated refugees and non-permanent workers. L. tropica is the most reported agent of CL and followed by L. infantum and L. major in Turkey. Recently, the presence of L. donovani as a causative agent of CL has been also shown in the country (8,9). L. tropica is known to cause anthroponotic CL with a slow course (12-18 mo) and late ulceration. However, L. major is known as zoonotic CL and lesions show a severe inflammation and recover in fast course (2-8 mo). Frequently, L. major can cause big, ulcerative and usually wet lesions or dysfunctional scarring (8). The disease progresses to chronic form in 5-10% of total CL cases which does not improve spontaneously or with treatment in two years in Turkey (10).

Aggressive symptomatic outcomes of CL has been implemented to a strong correlation with parasite species due to the presence of parasite-intrinsic virulence factors (11). *Leishmania* RNA virus (LRV) belongs to a double-stranded RNA virus genus, in Totiviridae family. Because of differences in gene regulation and sequences, LRV differentiated as LRV1 and LRV2 that seen in the New and Old World respectively. LRV1 has been detected in *L. guyanensis, L. braziliensis* and *L. shawi* in the New World (12-15) while LRV2 has been detected in *L. major, L. aethiopica, L. infantum,* and *L. tropica* in the Old World (16-19). Recently, the role of LRV on the development of infectious metastases in the New World has been shown in some studies in both human and animal models and the presence of LRV1 predisposing to metastatic development indicates a relationship between the virus and metastatic complications of the disease, such as mucocutaneous leishmaniasis (20). For this reason, the detection of the LRV became important for understanding different clinical outcomes of CL. For the detection of LRV, different molecular and serological methods are used with different sensitivities.

In this study, we aimed to increase the sensitivity of quantitative real-time polymerase chain reaction (qPCR) based detection of LRV with by adding a modification step in cDNA synthesis using *L. major* and *L. tropica* strains which are found to be LRV2-1 positive previously (19).

METHODS

Parasite Cultures

Previously isolated and cryopreserved, three *L. major* and two *L. tropica* LRV2 positive strains (19) and a control strain (MHOM/ SU/73/5- ASKH, *L. major*) which was also LRV2 positive were included Table 1.

Mass cultivation of *Leishmania* promastigotes were performed in RPMI 1640 medium supplemented with 10% fetal calf serum at 24-25 °C. Different promastigote dilutions $(1x10^8, 1x10^5 \text{ and} 1x10^3)$ were prepared for comparison.

RNA Isolation and Complementary DNA (cDNA) Synthesis

Total RNA was isolated with different promastigote dilutions using trizol reagent (Roche) as performed previously (19). The quantity of the extracted RNAs was analysed using a NanoDrop spectrometer 100 ng RNA was added per reaction. Synthesis of cDNA was performed using a cDNA Synthesis Kit (EvoScript Universal cDNA Master, Roche) with random hexamer primers according to the protocol provided by the manufacturer (15 min at 42 °C, 5 min 85 °C, 15 min at 65 °C and cool to 4 °C with an unlimited hold time). The modification was done prior to cDNA synthesis, the samples were denatured at 95 °C for 2 min, as a modification of the kit procedure.

qPCR

Quantitative real-time PCR was performed with a reaction solution of 0.5 mM primers in SYBR Green Master mix (Roche). The reaction performed with an initial denaturation (95 °C for 5 min) followed by 40 amplification cycles (10 s at 95 °C, 10 s at 55 °C, 10 s at 72 °C) and a fluorescence detection step (70 °C to 95 °C) with quantification of amplified DNA after each cycle. The DNA oligonucleotides (Microsynth, Switzerland) targeted LRV 2-1 RNA Dependent RNA polymerase (*RdRp*) gene were used (18,19). Molecular grade water was used as negative control.

Table 1. LRV positive strains used in t	he study			
Strain WHO code	Clinical type	Leishmania species	LRV code	LRV accession number
MHOM/TR/93/EP1	VL	L. tropica	LRV2-Ltr-EP1	MK24753
MHOM/TR/04/EP92	CL	L. tropica	LRV2-Ltr-EP92	MK24757
MHOM/TR/2012/CBU18	CL	L. major	LRV2-Lmj-CBU18	MK24760
MHOM/TR/2014/CBU33	CL	L. major	LRV2-Lmj-CBU33	MK24761
MHOM/TR/2013/CBUALA17	CL	L. major	LRV2-Lmj-CBUALA17	MK24762
MHOM/SU/73/5ASKH	International control strain	<i>L. major</i> (positive control)	LRV2-Lmj-5-ASKH	
WHO: World Health Organization, CL: Cuta	neous leishmaniasis. VL	: Visceral leishmaniasis		

Table 2. Sybr gre corresponding m	en real-time easure of the	PCR assays f viral load pe	ior the detection of r parasite may be or	f LRV2 and Ct value ne of the factors ass	es of different dilusion sociated with the p	tions respectively. ¹ athogenesis of <i>Leis</i>	This relative abun hmania	dance which gives a
Strain WHO code	Clinical type	Leishmania species	1x10 ⁸ pre-denaturation (Ct value)	1x10 ⁵ pre-denaturation (Ct value)	1x10 ³ pre-denaturation (Ct value)	1x10 ⁸ non-denaturation (Ct value)	1x10 ⁵ non-denaturation (Ct value)	1x10 ³ non-denaturation (Ct value)
MHOM/TR/93/ EP1	VL	L. tropica	31,22	36,84	37,55	36,28	1	1
MHOM/TR/04/ EP92	cr	L. tropica	17,97	31,64	36,45	20,45	29,91	39,94
MHOM/TR/2012/ CBU18	cL	L. major	2.33	6.67	7.20	4.67	9.05	11,02
MHOM/TR/2014/ CBU33	cr	L. major	26,17	32,67	35,28	28,72	33,19	39,94
MHOM/TR/2013/ CBUALA17	CL	L. major	30,08	30,25	31,37	32,48	34,37	38,08
MHOM/ SU/73/5ASKH	International control strain	L. <i>major</i> (Positive control)	7.78	8.37	9.96	10,81	11,09	11,70

Nalçacı et al. The Modification in the Detection of LRV2

Statistical Analysis

Statistical analysis has not been made in this study.

RESULTS

Effect of pre-cDNA Modification on Cycle Treshold (Ct) Values

The differences were determined after the modification was applied. After the amplification of LRV2-1 specific RNA dependent RNA polymerase (RdRp) region, we observed lower Ct values in amplicons with modified version than classical kit protocol for cDNA synthesis in all of the strains used in the study (Only one strain at the 10⁵ dilutions showed discordance with other results). This is showing that the sensitivity of the quantitative real time PCR (qPCR) is increasing by modification in cDNA synthesis protocol (Table 2).

Results with Limiting Dilution

Whether this difference in the sensitivity of qPCR performed with the products of the modified and classical cDNA synthesis is effected with the limitation of the parasite numbers is also examined. With this aim modified and classical protocols were performed to three different dilutions as 10^8 - 10^5 and 10^3 to all strains included in the study and than PCR results were compared. Lower Ct values in $1x10^8$ and $1x10^5$ parasite numbers than $1x10^3$ in all strains. When the test conducted using 10^3 parasites, Ct values increased to 37-38 depending on different strains (Table 2). These values can be considered as weak reactions and in some cases it can be said that they are inadequate to give clear results. In the melting curve analyzes, there were not any non-specific products. All of our products were higher than 80 °C showing that they are not primer dimers but PCR products (Figure 1).

DISCUSSION

CL: Cutaneous leishmaniasis, VL: Visceral leishmaniasis, Ct: Cycle treshold, PCR: Polymerase chain reaction

WHO: World Health Organization,

Studies have shown LRV positivity in Leishmania species/strains is one of the important factor in the worsening of prognosis of CL lesion and drug resistance of the causative agent (21). Previously, LRV was found to be positive in some *L. major* and L. tropica strains isolated from Turkey (19) after it is reported in the L. major, L. infantum and L. aethiopica strains from Old World countries (17,18). In this study, we aimed to increase the sensitivity of PCR by the modification of cDNA synthesis due to double stranded character of LRV. SYBR green qPCR was performed in order to compare the sensitivity of the modified method. In the literature, we could not find any application for LRV similar to our modification step (17,22). However, we have observed in several publications that for different double-stranded viruses a additional step is added before cDNA synthesis (23-25). In two studies, on Bursal disease virus seen in young chickens and Magnaporthe oryzae virus, which causes disease in rice plants, denaturation process was applied before cDNA synthesis. No information about the purpose of predenaturing was given in the studies (23,25). In recent studies on Pseudomonas virus and Saccharomyces cerevisiae virus, it has been reported that DMSO is used together with the temperature factor before cDNA synthesis. So far, successful results have been obtained in the denaturation of dsRNA. However, more research is needed on this subject (26,27).

The modification in this study was applied in order to separate the chains of the double stranded virus, LRV2, allowed us to obtain different Ct values on the same strain. We observed lower Ct values in amplicons with the modified version for cDNA synthesis in the strains included in the study except one (MHOM/ TR/04/EP92). We observed incompatibility in only this strain at the 10⁵ dilutions, probably due to a manipulation in the lab. This is showing that the sensitivity of the qPCR increase with our modification in cDNA synthesis protocol. The importance of the modification was also showed with the limiting dilution of the parasites (Table 2). Higher positivity rates were obtained by molecular methods than either agarose gel method or serological methods in LRV studies (28). In our previous study, LRV2 could detected in three L. major strains by agarose gel method and PCR while seven L. tropica strains were found to be LRV2 positive only by PCR (19). Higher sensitivity is especially important for the LRV detection in patient's clinical samples in order to determine the prognosis of the disease.

The present study was performed using laboratory strains isolated before, therefore we did not have the clinical records. In Turkey, approximately 10% of CL cases were reported as chronic CL patients with a survey longer than two years. It is reported that, some CL cases caused by *L. major* were showing a rapid progressing course with severe inflammation and ulceration. These cases had frequently numerous large lesions with a bad appearance or scatrises which is causing functional disorders. Usually *L. tropica* causes small and dry lesions with a long course. However, some *L. tropica* cases have lesions continuing many years, resistant to therapy and especially spreading to the other parts of the face (8,10).

CONCLUSION

The sensitivity of qPCR was increased with a modification in pre cDNA synthesis protocol. It is important especially for detecting

LRV in clinical samples obtained from patients which probably have less number of parasites especially to understand the relationship between LRV and pathogenecity.

*Ethics

Ethics Committee Approval: No studies were conducted on humans or animals in this study. Therefore, there was no need for approval from the local ethics committee.

Informed Consent: Patient consent not applicable for this study. **Peer-review:** Externally peer-reviewed.

*Authorship Contributions

Concept: M.N., M.K., Y.Ö., S.T., Design: M.N., M.K., Y.Ö., S.T., Data Collection or Processing: M.N., A.Ö., S.T., Analysis or Interpretation: M.N., M.K., Y.Ö., A.Ö., S.T., Literature Search: M.N., S.T., Writing: M.N., Y.Ö., S.T.

Conflict of Interest: All authors declared that there is no conflict of interest.

Financial Disclosure: This work was supported by the Ege University Scientific Research Projects Coordination Unit (17-FEN-045) and partially by the Scientific and Technological Research Council of Turkey (TÜBİTAK) project no: 144S999.

REFERENCES

- 1. Steverding D. The history of leishmaniasis. Parasit Vectors 2017; 10: 82.
- WHO. Department of Control of Neglected Tropical Diseases Global leishmaniasis update, 2006-2015: a turning point in leishmaniasis surveillance. Weekly Epidemiological Record 2017; 92: 557-65.
- MacMorris-Adix M. Leishmaniasis: A review of the disease and the debate over the origin and dispersal of the causaitive parasite Leishmania. Macalester Reviews in Biogeography 2009; 1.
- WHO. Leishmaniasis. Available from: https://www.who.int/ leishmaniasis/disease/en/2019 (accessed october 2019)
- van Henten S, Adriaensen W, Fikre H, Akuffo H, Diro E, Hailu A, et al. Cutaneous Leishmaniasis Due to *Leishmania aethiopica*. EClinicalMedicine 2019; 6: 69-81.

- Özbilgin A, Yıldırım A, Çavuş İ, Baştemir S. Three Autochthonous Cutaneous *Leishmaniasis* Cases in Manisa. Türk Mikrobiyol Cem Derg 2016; 45: 103-8.
- Uzun S, Gürel MS, Durdu M, Akyol M, Fettahlıoğlu Karaman B, Aksoy M, et al. Clinical practice guidelines for the diagnosis and treatment of cutaneous leishmaniasis in Turkey. Int J Dermatol 2018; 57: 973-82.
- 8. Harman M. Cutaneous Leishmaniasis. Turk J Dermatol 2015; 9: 168-76.
- Özbilgin A, Çavuş İ, Yildirim A, Gündüz C. [Do the rodents have a role in transmission of cutaneous leishmaniasis in Turkey?] Mikrobiyol Bul 2018; 52: 259-72.
- Gurel MS, Yeşilova Y, Olgen MK, Ozbel Y. [Cutaneous Leishmaniasis in Turkey]. Turkiye Parazitol Derg 2012; 36: 121-9.
- 11. Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, et al. Leishmania RNA virus controls the severity of mucocutaneous leishmaniasis. Science 2011; 331: 775-8.
- Tarr PI, Aline RF, Smiley BL, Scholler J, Keithly J, Stuart K. LR1: a candidate RNA virus of Leishmania. Proc Natl Acad Sci U S A 1988; 85: 9572-5.
- Stuart KD, Weeks R, Guilbride L, Myler PJ. Molecular organization of Leishmania RNA virus 1. Proc Natl Acad Sci U S A 1992; 89: 8596-600.
- Salinas G, Zamora M, Stuart K, Saravia N. Leishmania RNA Viruses in Leishmania of the Viannia Subgenus. Am J Trop Med Hyg 1996; 54: 425-9.
- 15. Cantanhêde LM, da Silva Júnior CF, Ito MM, Felipin KP, Nicolete R, Salcedo JMV, et al. Further Evidence of an Association between the Presence of Leishmania RNA Virus 1 and the Mucosal Manifestations in Tegumentary Leishmaniasis Patients. PLoS Negl Trop Dis 2015; 9: e0004079.
- Scheffter SM, Ro YT, Chung IK, Patterson JL. The complete sequence of Leishmania RNA virus LRV2-1, a virus of an Old World parasite strain. Virology 1995; 212: 84-90.
- Zangger H, Hailu A, Desponds C, Lye LF, Akopyants NS, Dobson DE, et al. Leishmania aethiopica Field isolates bearing an endosymbiontic dsRNA virus induce pro-inflammatory cytokine response. PLoS Negl Trop Dis 2014; 8: e2836.
- Hajjaran H, Mahdi M, Mohebali M, Samimi-Rad K, Ataei-Pirkooh A, Kazemi-Rad E, et al. Detection and molecular identification of leishmania

RNA virus (LRV) in Iranian Leishmania species. Arch Virol 2016; 161: 3385-90.

- Nalçacı M, Karakuş M, Yılmaz B, Demir S, Özbilgin A, Özbel Y, et al. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans R Soc Trop Med Hyg 2019; 113: 410-7.
- 20. Hartley M-A, Ronet C, Zangger H, Beverley SM, Fasel N. Leishmania RNA virus: when the host pays the toll. Front Cell Infect Microbiol 2012; 2: 99.
- Ives A, Masina S, Castiglioni P, Prével F, Revaz-Breton M, Hartley MA, et al. MyD88 and TLR9 dependent immune responses mediate resistance to Leishmania guyanensis infections, irrespective of Leishmania RNA virus burden. PLoS One 2014; 9: e96766.
- 22. de Souza MM, Manzine LR, da Silva MVG, Bettini J, Portugal RV, Cruz AK, et al. An improved purification procedure for Leishmania RNA virus (LRV). Braz J Microbiol 2014; 45: 695-8.
- Urayama SI, Takaki Y, Nunoura T. FLDS: A comprehensive DSRNA sequencing method for intracellular RNA virus surveillance. Microbes Environ 2016; 31: 33-40.
- 24. Crabtree AM, Kizer EA, Hunter SS, Van Leuven JT, New DD, Fagnan MW, et al. A Rapid Method for Sequencing Double-Stranded RNAs Purified from Yeasts and the Identification of a Potent K1 Killer Toxin Isolated from Saccharomyces cerevisiae. Viruses 2019; 11: 70.
- Boot HJ, ter Huurne AH, Peeters BP. Generation of full-length cDNA of the two genomic dsRNA segments of infectious bursal disease virus. J Virol Methods 2000; 84: 49-58.
- Wilcox AH, Delwart E, Díaz-Muñoz SL. Next-generation sequencing of dsRNA is greatly improved by treatment with the inexpensive denaturing reagent DMSO. Microb Genom 2019; 5: e000315.
- Nwokeoji AO, Kung AW, Kilby PM, Portwood DE, Dickman MJ. Purification and characterisation of dsRNA using ion pair reverse phase chromatography and mass spectrometry. J Chromatogr A 2017; 1484: 14-25.
- Zangger H, Ronet C, Desponds C, Kuhlmann FM, Robinson J, Hartley MA, et al. Detection of Leishmania RNA virus in Leishmania parasites. PLoS Negl Trop Dis 2013; 7: e2006.