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Amaç: Mevcut in-silico araştırması, Leishmania infantum lipofosfoglikan (LPG) ve γ-glutamilsistein sentetazına (γ-GCS) karşı 
umut verici ilaçlar bulmak amacıyla 20000 Gıda ve İlaç İdaresi  onaylı ilaç bileşiklerinin taranması için tasarlandı ve uygulandı.
Yöntemler: Her iki hedefin protein sekansı alındıktan sonra, 3D yapıları tahmin edildi ve doğrulandı. Moleküler yerleştirme 
iki varsayılan hedef (LPG ve γ-GCS) arasında yapıldı ve ligand-reseptör etkileşimlerini tahmin etmek için AutoDock 4.2 programı 
kullanılarak onaylanmış bileşikler seçildi.
Bulgular: Yirmi bin ilaç bileşiği üzerinde deney yapıldıktan sonra, γ-GCS reseptörü için iki ve LPG reseptörü için beş olmak üzere 
toplam yedi ligand, bağlanma afiniteleri ve enerjilerine göre yeni, güçlü anti-leishmanial ilaçlar olarak belirlenmiştir. Bunlardan 
5 ligand 8,5 kcal/mol’e kadar daha negatif ΔGbinding ile LPG reseptörüne iyi bağlanma kapasitesi gösteren sitotoksik ve anti-kanser 
özelliklere sahipti. Bunlardan 2 ligand, 7,8 kcal/mol’e kadar daha negatif ΔGbinding ile glutamil reseptörüne iyi bir bağlanma kapasitesi 
gösterdi.
Sonuç: En yeni yazılım tabanlı yöntemler, yeni ilaç keşfi için organizmalarda biyolojik hedeflere özgü yeni peptid şablonlarını 
taramak ve tahmin etmek için güçlü araçlardır. Bununla birlikte, in vitro ve in vivo tekniklerin kullanımı, öngörülen ligandların 

öz

Objective: Current in-silico research was designed and administered for the screening of 20000 Food and Drug Administration-
approved drug compounds with the goal of finding promising drugs against lipophosphoglycan (LPG) and γ-glutamylcysteine 
synthetase (γ-GCS) of Leishmania infantum.
Methods: After the protein sequence of both targets was taken, the 3D structures of protein of interest were predicted and 
validated. Molecular docking was done among the two putative targets (LPG and γ-GCS) and approved compounds were selected 
using AutoDock 4.2 program to predict ligand-receptor interactions. 
Results: After docking experiment was done on 20000 drug compounds, a total number of seven ligands, two for γ-GCS receptor 
and five for LPG receptor, were assigned as novel, potent anti-leishmanial drugs based on their binding affinity and energy. Of 
those, five ligands possessed cytotoxic and anti-cancer characteristics and showed good binding capacity to LPG receptor with 
ΔGbinding up to 8.5 kcal/mol more negative; while two compounds showed good binding capacity to glutamyl receptor with ΔGbinding 
up to 7.8 kcal/mol more negative.
Conclusion: The latest software-based methods are powerful tools for scanning and predicting new peptide templates specific 
to biological targets in organisms for new drug discovery. However, the use of in vitro and in vivo techniques is a requirement for 
better evaluation of the potential of projected ligands with the help of in-silico approaches, identifying molecular mechanism of 
action of the more active compounds is possible. This can help in defining the most likely molecular target, so that the subsequent 
optimization using in vitro and in vivo techniques can be undertaken.
Keywords: In-silico, lipophosphoglycan, γ-glutamylcysteine synthetase, molecular docking, cytotoxic and anti-cancer activity
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INTRODUCTION
The protozoan parasites of Leishmania spp. are the causative agents 
of a neglected disease called leishmaniasis, being considered as a 
significant health concern in tropical and subtropical regions of 
the world (1). This infection usually disseminates via the bite of 
a female sand fly and renders different clinical manifestations 
from cutaneous ulcers to mostly pernicious visceral leishmaniasis 
(VL) (2). Approximately, one hundred nations have documented 
leishmaniasis infection with 350 million at-risk individuals 
residing in endemic territories. As a global perspective, 12 million 
people are infected and the incidence rates for VL is calculated to be 
0.2-0.4 million cases annually (3). Over ninety percent of VL cases 
occur in six countries, including Brazil, India, Sudan, Bangladesh, 
South Sudan and Ethiopia (4). Multiple factors are involved in 
the incidence of leishmaniasis, comprising sandfly and reservoir 
control issues, increased traditional traveling, suppressed host 
immunity due to disease complications and some drugs, lack 
of efficacious immunoprophylaxis as well as drug resistance to 
traditional therapies (5,6). It has been disclosed that currently 
administered anti-leishmanial drugs are costly and may possess 
toxicity and develop drug resistance; hence, it is an urgent need 
for the development of novel, safe and affordable drugs to combat 
leishmaniasis (7,8). Approved drugs, especially those approved by 
Food and Drug Administration (FDA), have favorable or validated 
pharmacokinetic properties and toxicological profiles, and the 
repositioning of existing drugs for new indications can potentially 
avoid expensive costs associated with early-stage testing of the 
hit compounds (9). The fundamentals of drug discovery rely on 
the determination of a distinct protein and/or metabolic pathway 
specific to the pathogen (10). Bioinformatics is a computer-
based interdisciplinary approach for various inter-molecular 
prediction purposes such as peptide-receptor interactions 
(11). Recognizing structure-activity associations using in-silico 
screening would efficiently lead us to identify specific drug 
targets for such neglected infections (12). The conventional drug 
discovery needs about 14 year and approximately 2.5 billion USD 
to approve and launch a new drug. To overcome time and cost 
obstacles to conventional drug discovery the process of assessing 
new indication for existing and approved drugs called drug 
repositioning (DR), has been introduced so far. Through taking 
advantage of drugs already in clinical use for other indications 
or drugs that have cleared early safety phases of trials, DR can 
reduce the time and cost of the drug discovery process. Several in-
silico approaches have been established to apply the DR, including 
omics-based and molecular docking based approaches. 
Trypanothione is a crucial molecule in the initial confront with 
host macrophages, neutralizing their reactive oxidative species 
and redox potential maintenance (13,14). During its biosynthesis, 
the enzyme γ-glutamylcysteine synthetase (γ-GCS) catalyses the 
first and rate-limiting phase and possess imperative action in 
parasite survival, rendering it as a considerable drug target (15,16). 
In contrast to other trypanosomatid species, the glycocalyx 
of Leishmania parasites constitutes of phosphoglycosylated 
glycans anchors of glycosylphosphatidylinositol (GPI). One of 

the most outstanding glycoconjugates of the Leishmania surface 
membrane is lipophosphoglycan (LPG) (17). This molecule may be 
an appropriate drug target since it is a strong agonist of toll-like 
receptors, inhibits the activation of protein kinase C, harnesses 
complement system and damages phagolysosome maturation (18). 
In this experimental study, we aimed to investigate in-silico 
anti-leishmanial activity of 3358 FDA-approved compounds 
against above-mentioned drug targets of Leishmania infantum (L. 
infantum) and compared to amphotericin B and glucantime. 

METHODS

Template Selection and Confirmation
At first, the FASTA format of amino acids sequences of LPG 
(Uniprot ID: A4I4C9) and γ-GCS (Uniprot ID: A4HY37) for L. 
infantum were gathered from the UniProt Database (https://www.
uniprot.org), and was used in BLAST analysis. Then, a program 
search protein databases using a protein query called BLASTP 
was run against the protein data bank to find a three-dimensional 
(3D) determined structure according to the best alignment 
scores. Subsequently, respective 3D structural models for both 
molecules were created using Swiss-Model online software 
(https://swissmodel.expasy.org), then validated by Protein 
Model Portal (https://www.proteinmodelportal.org), saves v5.0 
(http://servicesn.mbi.ucla.edu/SAVES/), and Protein Structure 
Evaluation Suite & Server (http://www.prosess.ca) web servers. 

Figure 1. Schematic workflow for finding potential drug, 
ligands and receptors specific to the L. infantum receptor

potansiyelinin daha iyi değerlendirilmesi için bir gerekliliktir. İn-silico yaklaşımların yardımı ile daha aktif bileşiklerin moleküler düzeyde etki 
mekanizmasınının tanımlanması mümkün olmaktadır ve böylece en olası moleküler hedef belirlenebilmekte ve in vitro ve in vivo teknikleri kullanarak 
sonraki optimizasyon yapılabilmektedir.
Anahtar Kelimeler: In-siliko, lipofosfoglikan, γ-glutamilsistein sentetaz, moleküler yerleştirme, sitotoksik ve anti-kanser aktivitesi 
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Finally, the selected protein was simulated using GROMACS 5.1.3 
software (19) for 100 ns base on the ABMER03 force field. The 
flow diagram of finding potential drug, ligands and receptors 
specific to the L. infantum receptor has given in details (Figure 1). 

Ligands Library Preparation
We used a method for template and FDA approved drug selection 
that we conducted and published previously (20). In brief, 
20000 FDA approved drugs were randomly extracted from 
the ZINC database and tested against two selected receptors. 
For comparative study, the 3D structure of two known anti-
leishmanial drugs from Drug Bank (https://www.drugbank.ca) 
and PubChem (https://pubchem.ncbi.nlm.nih.gov) databases 
were screened and appointed. Thus, a library of potential 
ligands was built. Also, two drug targets and FDA-approved drug 
compounds were prepared for molecular docking. Al ligands in the 
pdbqt format were retrieved using openbabel software and their 
energy was minimized by MMFF94 force field. 

Virtual Screening, and Control Setting 
In this study, we used structure-based virtual screening, a 
computational-aided technique used in the early-stage drug 
discovery campaign to search a chemical compound library for 
novel bioactive molecules against a drug target of interest (21).  
We used PyRx Software for virtual screening procedure. All 20000 
selected FDA-approved drugs were docked using AutoDock Vina 
in PyRx 0.8 (22). These drugs with their chemical structure, 
physical properties, and clinical indications have been retrieved 
from various public databases, including PubChem , CheEMBL, 
DrugBank, and DrugCentral (23). Glucantime and amphotericin 
B were used as control drugs in our experiment because they are 
standard treatment options for VL. 

Molecular Docking
The AutoGrid section of AutoDock tools was employed to compute 
the grid maps of all LPG and γ-GCS molecules, taking into account 
large enough ones to include surface and active site. AutoDock 
4.3 software was used for docking the chosen drug compounds 
into the active site of LPG and γ-GCS. The Lamarckian genetic 
algorithm-based AutoDock 4.2 was applied for ligand-receptor 
interactions. To increase docking efficiency, the total number of 
63800 runs were performed for each drug target. Upon yielding 
docking values, cluster analysis was fulfilled in accordance with 
the root mean square (0.5A). 
The ligands were sketched and geometrically minimized using 
ACD Chemsketch (www.acdlabs.com) and Marvin Sketch (www.
chemaxon.com), respectively. The ligands and proteins were then 
prepared using AutoDock Tools 1.5.6 (www.autodock.scripps.
edu). The proteins were added with polar hydrogen and given 
by Kollman charge, whereas the ligands were given by Gasteiger 
charges. The grid was centered on each protein binding site and 
the docking was then performed using AutoDock Vina embedded 
in PyRx version 8.0 (www.autodock.scripps.edu). The hit of 
protein was selected based on the lowest mean of free energy 
of binding (D Gbind), whereas a combination of a low D Gbind and 
hydrogen bond interaction was considered to select the hit of the 
ligand. The selected docking pose was visualized using discovery 
studio 3.5 (www.accelyrs.com).
In the following, AutoDock Vina and AutoDock 4.2 were assigned 
to calculate free energy charge of binding and binding affinity. 
Below equation corresponds to computation of estimated free 
energy charge of binding: (6) 

estimated free energy charge of binding=torsional free energy of 
ligand + final inter - molecular energy

Molecular Dynamic (MD) Simulation
After preparing the template and ligands, the prepared 
conformations were used as the initiating structure 
for molecular dynamic (MD) simulation. The acquired 
conformation of MD, as well as the docked ligands, were 
engaged in the MD simulation process. All MD simulations 
were done using the GROMACS 5.1.3 software package 
and the AMBER03 force field, in a box with dimensions of 
96×95×100 Å. The force field parameters were acquired from 
the antechamber module (22) of the Amber program, using the 
GAFF force field (23). Partial charges of the ligands were assigned 
using the AM1-BCC model (24), and an energy minimization 
method was performed. After energy minimization, a position 
restraint process was accomplished in association with NVT and 
NPT ensembles. Finally, the selected protein was simulated using 
GROMACS 5.1.3 software (19) for 100 ns base on the ABMER03 
force field. 

RESULTS
In total, three and seven templates were predicted using Swiss-
model for LPG and γ-GCS, respectively. The best model for LPG 
was the second model, whereas the best one for γ-GCS was the first 
template, with XP_001468657.1 vs XP_001464978.1 sequence 
identities, e-values of 1.18962e-124 vs 2.26415e-140 and final 
total model energies of -12670.841 kJ/mol vs -12892.576 kJ/mol 
(Figure 2A and 2B). 

Figure 2. A) The LPG model from L. infantum using homology 
modeling software, B) The γ-GCS model from L. infantum using 
homology modeling software. The upper, left figure shows the 
prepared model for the receptor of interest, the upper, right 
figure shows model validation with ERRAT, the bottom left 
figure shows Ramachandran plot with the percentage of amino 
acids in favored and allowed regions, and the bottom, right 
figure shows the detail of model local quality
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Model validation was also done and Ramachandran plots were 
calculated for LPG and γ-GCS, suggesting 99.1% vs. 97.4% 
residues in the allowed region, respectively. According to ERRAT 
program results, the total quality factors of provided models for 
LPG and γ-GCS were as 91.912 and 91.008, respectively. Chemical 
properties of selected FDA-approved compounds were given in 
detail in Table 1. 
After the accomplishment of docking on 20000 drug compounds, 
a total number of seven ligands, two for γ-GCS receptor and five 
for LPG receptor, were assigned as novel, potent anti-leishmanial 
drugs based on their binding affinity and energy (Table 2). 
Of these, five ligands possessed cytotoxic and anti-cancer 
characteristics that showed a good binding capacity to LPG 
receptor with Δ Gbinding up to 8.5 kcal/mol more negative (Figure 
2A, C, D, E); while, two compounds showed good binding capacity 
to Glutamyl receptor with Δ Gbinding up to 7.8  kcal/mol more 
negative (Figure 3A and B) . The selected compound 186 inserted 
in the hydrophobic pocket created by Met237, Val241, Ser254, 
and Gly260, as shown in Figure 2A.  The compound 427 inserted 
in the hydrophobic pocket created by Thr104, Lys107, Met237, 
Thr238, and Val241, as shown in Figure 2B. The compound 446 
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Figure 3. A) Experimental ligand no. 186 (zinc186) that 
showed H-binding to LPG receptor, B) experimental ligand no. 
427 (ZINC427) that showed H-binding to lipophosphoglycan 
(LPG) receptor C) experimental ligand no.446 (ZINC446) forms 
H-bond with LPG receptor, D) experimental ligand no.478 
(ZINC478) forms H-bonds with LPG receptor, E) Experimental 
ligand no.767 (ZINC767) that showed H-binding to LPG 
receptor form L.infantum. The selected compound 183 inserted 
in the hydrophobic pocket created by Gly321, Val381, Ser474, 
Gln479, and Arg498, as shown in Figure 3A.  The compound 
648 inserted in the hydrophobic pocket created by Pro91, 
Leu189, Glu192, Ser474, and Trp477, as shown in Figure 3B.

Figure 3. A) Experimental ligand no. 183 (zinc183) that 
showed H-binding to γ-GCS receptor, B) experimental ligand 
no. 648 (ZINC648) that showed H-binding to γ- GCS receptor 
form L. infantum
GCS: Glutamylcysteine synthetase 
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inserted in the hydrophobic pocket 
created by Val111, Thr166, Tyr169, 
Met253, and Gly257, as shown in 
Figure 2C. The compound 478 inserted 
in the hydrophobic pocket created 
by Thr104, Lys107, Ala110, Ser254, 
and Gly257, as shown in Figure 2D. 
The compound 767 inserted in the 
hydrophobic pocket created by Thr48, 
Leu82, Met92, Leu195, and Asn260, as 
shown in Figure 2E. 

DISCUSSION
The routine medications used 
against VL usually entail cytotoxicity, 
discomfort, and development of 
resistant strains (7,24-26). Hence, 
peptides with various metabolic 
activity may be considered as 
potent vaccine candidates and drug 
targets (27,28). During the invasion, 
Leishmania expresses a wide spectrum 
of proteins with different metabolic 
and/or pathogenic activity (29,30). A 
number of such proteins have been 
discerned as drug targets for modern 
leishmaniasis treatment, including 
dihydrofolate reductase, pteridine 
reductase enzymes, protein kinases 
and topoisomerases (6,31,32). With 
respect to the function of γ-GCS 
and LPG in immune evasion and 
parasite survival (15,18), we selected 
them as robust drug targets in our 
investigation, which hadn’t been 
assessed previously. As the most 
plentiful GPI-anchored molecule 
of Leishmania promastigotes, LPG 
has been proved to be central to 
complement inhibition, macrophage 
entrance, transformation to 
amastigote form and tolerance to 
hydrolytic and oxidant circumstances 
(33). The thiol redox metabolism 
is one of the outstanding genetic 
hallmarks of Leishmania (34). 
Trypanothione [T (SH)2] system 
constitutes a considerable part of 
reduced thiols, which equips the 
parasite to withstand drugs with 
antimonial elements (35-37). The 
first step of T (SH)2 biosynthesis is 
catalyzed by γ-GCS enzyme, which has 
also been identified in an evolutionary-
related organism, Trypanosoma brucei 
(T. Brucei) (34,38). Wild resistant 
isolates (39) or cultivated Leishmania 
parasites (40) have been shown to 
overexpress or amplify the γ-GCS 
gene. Furthermore, RNAi knock-down 
of the respective gene resulted in cell 
death of T. brucei (41). These findings Ta
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highlight the significance of γ-GCS, the important rate-limiting 
catalyzer of glutathione biosynthesis, as a compelling drug target 
for modern leishmaniasis treatment options. 
The “in-silico” analysis which stands for computer-based biological 
experiments, is a state-of-the-art and accurate method to 
discover exclusive bioactive compounds, which may represent 
novel metabolic pathways and/or a powerful affinity to a 
certain target (42). In this sense, several studies have identified 
unprecedented molecules for various drug targets in Leishmania, 
such as pteridine reductase1, tryparedoxin peroxidase and sterol 
biosynthesis (43-48), as well as in other single-celled eukaryotes 
enclosing Toxoplasma gondii, Cryptosporidium hominis, Plasmodium 
and Trypanosoma cruzi (49-51). Current in-silico investigation 
was aimed to screen and predict the anti-leishmanial potency of 
3358 FDA-approved compounds against both drug targets in L. 
infantum in comparison to amphotericin B and glucantime for the 
discovery of new biochemical molecules. Using computer-aided 
tools, only seven out of 3358 tested compounds were qualified to 
be a biological ligand for our targets, three with anti-tumor activity 
and the others with anti-inflammatory features. Approving the 
antiprotozoal activity of certain compounds with anti-cancer or 
anti-inflammatory properties is one of the significant advances. 
The putative cytotoxicity induced by anti-cancer compounds in 
Leishmania may arise from the truth that both tumor cells and 
parasites assign biochemical analogies, which impact DNA and 
polyamine metabolism, glucose catabolism and the pathways of 
protein kinases (52). Similar to apoptosis pathway of multicellular 
livings, a fascinating mechanism of programmed cell death has 
also been recognized in protists such as Leishmania spp., which 
could be a rational explanation for outlandish anti-leishmanial 
effects of some antitumor substrates (53,54). So far, a number 
of anticancer drugs with various mechanisms of action have 
been tested for the aim of leishmaniasis treatment in vitro and 
in vivo, including doxorubicin (interaction with DNA), aniline-
acrydines (topoisomerase II inhibition), phospholipid analogues 
(lipid metabolism inhibition and cell membrane destruction), 
8-hydroxyquinolines (inhibition of electron transfer chain) 
and sunitinib (tyrosine kinase inhibitor) (32). Among these, 
tamoxifen, raloxifene, imiquimod, imatinib and sunitinib  
possessed good results in leishmaniasis animal models and are 
appropriate candidates for further evaluations (32). The efficacy 
of some anticancer protein kinase inhibitors was evaluated by 
Sanderson et al. (55), showing sarafenib, lapatinib and sunitinib 
as bioactive compounds against L. donovani amastigotes in murine 
macrophages. In the context of anti-leishmanial activity of anti-
inflammatory drugs, few compounds have been examined and 
less is understood regarding how they would impress the parasite 
molecular targets. For instance, murine systematic leishmaniasis 
was shown to be inhibited by acetyl salicylic acid-induced nitric 
oxide immunomodulation (56); however, this finding doesn’t 
indicate a ligand-target interplay. Thus, the impact of anti-
inflammatory drugs on potent Leishmania drug targets requires 
further in-silico and in vitro excavation and is still open to 
question. 
In total, high-throughput computer-aided analyses showed us a 
number of anti-inflammatory and anti-cancer compounds with 
anti-leishmanial activity, according to their well-established 
interaction to the respective parasite ligands (γ-GCS and LPG). 
However awaits in vitro, in vivo and clinical validations, such 
repurposed compounds would inhibit the parasite survival 
more efficiently than control drugs, as confirmed by in-silico 
investigations and obviates the need for current costly drugs with 
significant side effects. 

CONCLUSION 
With the advent of the computer era, software-based tools have 
paid a huge contribution in accurate predictions, comprising 
epitope mapping, drug-target interactions, etc. This cutting-edge 
method helps us to screen and predict novel peptide templates 
specific to biological targets in organisms leading to novel 
drug discovery. The present study demonstrated seven potent 
antileishmanial ligands out of 20000 FDA-approved explored 
compounds exist for LPG and γ-GCS drug targets. Although, in 
vitro and in vivo confirmations are also an inevitable requisite for 
further assessment of the potentiality of the predicted ligands. 
With the help of in-silico approaches identifying the molecular 
mechanism of action of the more active compounds was possible; 
thus, could define the most likely molecular target, so that the 
subsequent optimization using in vitro and in vivo techniques can 
be undertaken. 
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