

Diagn Interv Radiol 2025; DOI: 10.4274/dir.2025.243152

Copyright^o Author(s) - Available online at dirjournal.org. Content of this journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. REVIEW

Systematic review of artificial intelligence competitions in radiology: a focus on design, evaluation, and trends

¹Necip Fazıl City Hospital, Clinic of Radiology, Kahramanmaraş, Türkiye

²Ankara Bilkent City Hospital, Clinic of Radiology, Ankara, Türkiye

ABSTRACT

This article explores the characteristics and scope of artificial intelligence (AI) competitions in medical imaging. A retrospective evaluation of AI competitions related to medical imaging was conducted between 2017 and 2023. Relevant terms associated with AI and competitions were searched using the PubMed database and the grand-challenge website, and applicable studies were included in the review. The 26 AI competitions included in the review covered a wide range of topics, from brain imaging to extremities and from stroke detection to bone age estimation, with many organized through international collaborations between engineering and medical professionals. Various national screening and teleradiology databases, as well as university databases, were used. Teams from different regions worldwide participated in these competitions. These initiatives contribute to the global adoption of AI technologies in healthcare. Moreover, they help raise awareness among high school students, medical students, radiology trainees, and young radiologists of the intersection between AI and medical imaging. AI competitions play a crucial role in fostering collaboration between the medical field and AI, driving innovation, and increasing societal awareness of AI applications in healthcare.

KEYWORDS

Artificial intelligence, radiology, imaging, healthcare, competition

rtificial intelligence (AI) in healthcare is evolving through human–machine collaboration, with innovation driven by partnerships between academic healthcare institutions and industry. The proper validation of AI algorithms, effective data sharing, and training for radiologists is essential.¹ Fundamental requirements and quality standards applicable to all AI-related organizations have begun to be established.²

A study examining the impact of AI on radiology and medical imaging through web searches revealed a prevailing positive outlook, highlighting the leading role of radiologists in this discourse.³ Radiology department chairs tend to be optimistic, believing that AI will be beneficial in areas such as quality, efficiency, healthcare costs, and interpretation workflow.⁴ Although radiologists support the idea that AI will streamline workflow, medical students and surgeons approach it more cautiously.⁵

Despite potential biases and pitfalls in the use of AI technologies in medical imaging, their development and advancement are achievable through grand challenges. The expected benefits include creating code and trained datasets, openly sharing them, generating new work areas, and directly involving AI in patient care.⁶

With the widespread use of Al in the medical field, this systematic review aims to investigate the effectiveness of recently organized and popular radiological imaging competitions worldwide.

Methods

Ethical committee approval and patient consent are not required for this type of article. A search was conducted on the PubMed database using the terms "competition" or "contest"

Corresponding author: Ural Koç

E-mail: ukoc85@gmail.com

Received 03 December 2024; revision requested 24 January 2025; accepted 22 February 2025.

Epub: 07.04.2025

Publication date: xx.xx.2025

DOI: 10.4274/dir.2025.243152

added to the phrase "AI." The focus was on articles containing result reports of imaging-related competitions between 2019 and 2023. Completed competitions were identified using the "completed" filter on the grand-challenge website. Versions of identified competitions held in previous or subsequent years were also considered. A total of 26 competitions that provided sufficient information and had a substantial impact were included in the review (Figure 1).

Information recorded for each competition included the competition's name, year held, imaging modality, target region, search field, dataset source, dataset sample size, dataset accessibility, diversity of contributing institutions, derived academic publications (as of January 2024), citation count according to the Web of Science criteria (as of January 2024), competition location, evaluation criteria, and the number of participating individuals or teams.

Results

This review presents the characteristics of 26 Al and medical imaging-related competitions and datasets between 2017 and 2023 (Tables 1 and 2). These competitions were hosted by organizations such as the Annual Aviation, Space, and Technology Festival (TE-KNOFEST), the Radiological Society of North America (RSNA), and the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), either individually or collectively. Final competitions or winner announcements were held either onsite or online.

Various imaging modalities, including magnetic resonance imaging, computed to-mography, ultrasound, mammography, and digital breast tomosynthesis, were utilized. Competition themes covered different body regions, ranging from the head to the lower limb, with a focus on segmentation, cancer detection, and disease diagnosis. Most competitions used datasets from universities, but

Main points

- In recent years, artificial intelligence (Al) competitions have become widespread in the field of medical imaging.
- Datasets are commonly shared openly, and competition results are published in prestigious journals, receiving substantial citations.
- Al competitions help shape perspectives on Al in radiology education and among aspiring radiologists.

some also incorporated data from national teleradiology systems or screening programs. Although the majority of competition datasets were openly accessible, some required approval for access. One competition was conducted exclusively online, whereas others took place both online and onsite.

In the TEKNOFEST competitions, high school students competed in a separate category, distinguishing them from other competitions. Studies derived from these competition datasets were predominantly published in high-impact journals.

Discussion

The current review aims to evaluate Al applications in medical imaging competitions. which are rapidly increasing in today's medical imaging landscape. High-participation competitions are organized online or onsite in different parts of the world. Collaboration in dataset preparation involves radiologists, clinicians, engineers, and data scientists from different countries and institutions. Studies produced after competitions are published in high-quality journals, and their citation potential is relatively high. Competitions play an effective role in increasing the positive impact and benefits of Al in medical imaging and in generating greater interest in this field.

Organizations such as RSNA, MICCAI, and TEKNOFEST, or online platforms such as the grand-challenge website, host these competitions.⁷⁻³⁵ Dataset organization teams have sometimes come together as multinational teams and are generally multi-institutional.

Al competitions in medical imaging lead to the establishment of collaborations not only between interdisciplinary teams but also between institutions and countries, both for competition teams and data preparation teams. The robust infrastructure of national teleradiology systems and the strict preservation of imaging data enable the preparation of competition datasets and the generation of results closest to real-world data.

A study examining 2,517 clinical trials related to Al-associated medical devices revealed that research is generally conducted in specific countries at the national level, with studied populations limited to certain regions. In the last few decades, the development of AI technologies in the medical field has turned into a global competition led by China and the United States.³⁶ Allowing free participation from around the world in Al competitions in the health sector is increasing the momentum of innovation. The expansion of competitions to low-income countries will diversify the data population and facilitate the availability of developed software for the benefit of these countries.

In 2023, a competition format involving young radiologists and radiology trainees was first organized at the European Society of Medical Imaging Informatics Annual Meeting in Pisa, Italy; this marked a milestone in radiologists' orientation toward Al.³⁷ Participating in such competitions during the radiology training period can contribute to radiology education in the current era of strong momentum in Al and radiology collaboration.



Figure 1. Flowchart of the selection process for AI competitions in medical imaging. AI, artificial intelligence.

	ions and	l datasets					
Competition	Date	Modality	Target structure	Search field	Dataset source	Sample size	Dataset access
TEKNOFEST 2021 artificial intelligence in health competition (stroke dataset) ⁷	2021	СТ	Brain	Stroke	National Teleradiology System, Türkiye	877 CT	Open
TEKNOFEST 2022 artificial intelligence in health competition ⁸	2022	СТ	Abdomen	Abdominal emergencies	National Teleradiology System, Türkiye	1,517 CT	Open
TEKNOFEST 2023 artificial intelligence in health competition ⁹	2023	MG	Breast	Breast cancer	National Teleradiology System, Türkiye	N/A	Restricted
RSNA pediatric bone age challenge ¹⁰⁻¹²	2017	X-ray	Hand	Bone age	Stanford University and University of Colorado	14,236 hand radiographs	Open
RSNA pneumonia detection challenge ^{13,14}	2018	X-ray	Lung	Pneumonia	Public NIH	26,684 radiographs	Open
RSNA intracranial hemorrhage detection challenge ^{15,16}	2019	СТ	Head	Intracranial hemorrhage	Stanford University, Thomas Jefferson University, Unity Health Toronto, Universidade Federal de São Paulo, The American Society of Neuroradiology	27,861 unique CT	Open
RSNA pulmonary embolism challenge ^{17,18}	2020	СТ	Lung	Pulmonary embolism	Multi-institutional	12,195 CT	Open
RSNA brain tumor AI challenge ¹⁹	2021	MRI	Brain	Brain tumor segmentation/ radiogenomic classification	Multinational	8,000 MRI	Restricted
RSNA COVID-19 AI detection challenge (SIIM conference on machine intelligence in medical imaging) ²⁰	2021	X-ray	Lung	COVID-19 pneumonia	Multi-database	10,178 chest radiographs	Open
RSNA cervical spine fracture AI challenge ²¹	2022	СТ	Neck	Cervical spine fracture	Multinational	3,112 CT	Open
RSNA screening mammography breast cancer detection AI challenge ²²	2023	MG	Breast	Breast cancer	Mammography screening programs in Australia and the U.S.	8,000 MG	Open
RSNA abdominal trauma detection Al challenge ²²	2023	СТ	Abdomen	Abdominal traumas	Multinational	>4,000 CT	Open
CHAOS - Combined (CT-MR) healthy abdominal organ segmentation ²³	2019	CT/MRI	Abdomen	Abdominal organ segmentation	Dokuz Eylül University	40 MRI and 40 CT	Open
Tumor detection, segmentation, and classification challenge on automated 3D breast ultrasound ²⁴	2023	Ultrasound	Breast	Breast cancer	Harbin Medical University Cancer Hospital	200 ultrasound	Upon request
KNee OsteoArthritis Prediction Challenge ²⁵	2020	X-ray/MRI	Knee	Knee osteoarthritis	Previous study data	423 X-ray/MRI	Open
Surface learning for clinical neuroimaging (MLCN workshop challenge, MICCAI) ²⁴	2022	MRI	Brain	Cortical development	Previous study data	514 MRI	Upon request
K2S: from undersampled k-space to automatic segmentation (MICCAI) ²⁶	2022	MRI	Knee	Knee joint degeneration	University of California	816 MRI	Upon request
1st Boston neonatal brain injury dataset for hypoxic ischemic encephalopathy lesion segmentation challenge (MICCAI) ²⁷	2023	MRI	Brain	Hypoxic ischemic encephalopathy	Massachusetts General Hospital	133 MRI	Open
DBTex Challenge ²⁸	2021	Digital breast tomosynthesis	Breast	Breast cancer	Duke University	22,032 digital breast tomosynthesis	Open

Table 1. Continued							
Competition	Date	Modality	Target structure	Search field	Dataset source	Sample size	Dataset access
COVID-19 lung CT lesion segmentation challenge ²⁹	2020	СТ	Lung	COVID-19 pneumonia	Previous study data from the Cancer Imaging Archive	295 CT	Partial
Kidney tumor segmentation challenge (MICCAI) ³⁰	2019	СТ	Kidney	Kidney tumor	University of Minnesota Medical Center	300 CT	Partial
Kidney tumor segmentation challenge (MICCAI) ²⁴	2021	СТ	Kidney	Kidney tumor/ cyst	M Health Fairview or Cleveland Clinic Medical Center	300 CT	Open
Kidney tumor segmentation challenge (MICCAI) ²⁴	2023	СТ	Kidney	Kidney tumor/ cyst	M Health Fairview Medical Center	599 CT	Open
French Society of Radiology data challenge ³¹⁻³³	2018	MRI/CT/ Ultrasound	Knee/ Kidney/ Liver/ Breast	Meniscal tear, renal cortex segmentation, lesions of the liver, breast, and thyroid cartilage	Multi-institutional	5,170 images	N/A
French Society of Radiology data challenge ³⁴	2019	MRI/CT	Lung/ Brain/ Muscles	Pulmonary nodule, multiple sclerosis, sarcopenia	Multi-institutional	4,347 examinations	N/A
French Society of Radiology data challenge ³⁵	2020	CT/Ultrasound	Breast/ Neck/ Heart	Breast nodule, neck lymph node, coronary calcium score	Multi-institutional	2,076 examinations	N/A

TEKNOFEST, Annual Aviation, Space and Technology Festival; CT, computed tomography; MG, mammography; RSNA, Radiological Society of North America; NIH, National Institutes of Health; AI, artificial intelligence; MRI, magnetic resonance imaging; COVID-19, coronavirus disease 2019; MLCN, Machine Learning in Clinical Neuroimaging; MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention.

In a survey conducted among medical students in Canada, it was observed that although radiology specialization was among the top choices, there were widespread concerns about the negative effects of AI on radiologists. Information meetings are suggested to address these concerns.38 The negative effects of AI on radiology career development have also been noted among US medical students.³⁹ Public competitions involving medical students will contribute to a more realistic understanding of the relationship between AI and radiology expertise. Encouraging high school students to participate in some competitions strategically promotes AI development and raises social awareness among young individuals who have not yet made career choices. Technology teachers at the high school and even middle school levels can take the lead in encouraging participation in such activities during their training.

Additionally, such competitions can lead to the generation of new study topics on emerging issues and the establishment of new networks, facilitating the creation of start-ups. Al summer schools in medicine for high school students have begun to be established at universities.⁴⁰ Ethical dilemmas such as bias risk and data security, along with

Al's potential to assist medical professionals, cannot be overlooked in the realm of Al in healthcare.⁴¹ Al training programs should comprehensively address all these aspects.

The impact of Al-related medical imaging competitions on scientific publication conversion, citation potential, and integration into the literature was investigated. However, another crucial aspect—their clinical application and commercial utilization—lacks sufficient and effective information based on available datasets and publications. To bridge the gap between scientific innovation and clinical practice, it may be beneficial to increase awareness of these competitions among healthcare institutions, Al-related public organizations, and commercial entities while also expanding networking opportunities for competition participants.

Efforts have been made to standardize and enhance transparency in the evaluation of medical imaging competitions, from defining the competition's mission to dataset preparation methodologies and participant ranking metrics and criteria. However, substantial variations have been observed across these stages. 42 Proper competition design and interpretation can facilitate the validation of Al algorithms and promote their

translation into clinical applications. ⁴³ Several factors influence the outcomes of Al-related medical imaging competitions, including the dataset used, the reference annotations determined by annotators, and the scoring system applied for ranking. ⁴⁴ Quality control at all stages of a competition enhances the validity and reliability of its results. In our review, a comprehensive framework has been established, detailing the design, execution, and outcomes of current Al-related medical imaging competitions.

This review has some limitations. Not all the databases where competitions could be included were examined for all dates. However, by focusing on recent competitions in the most well-known databases and platforms, an attempt was made to minimize selection bias. There are only a few studies in the literature examining competitions related to Al and radiology. 6.45 However, our review is the first to address the dataset, organization teams, and competition features.

In conclusion, as AI continues to play an increasing role in radiology, competitions related to AI and medical imaging contribute to quality dataset sharing, collaboration among experts, and increased awareness in this field.

Intelligence in health ompetition growth of the properties of the	Competition	Studies derived	Citations	Dataset experts	Country	Number of	Evaluation criteria
Intelligence in health ompetition growth of the properties of the		from dataset				participants or teams in the first	
Intelligence in health mome ardiologists and momention engineers and competition are discinct threshold values for fold mental tealigence in health moments and activities and tealing and the state of the properties of the proper	TEKNOFEST 2021 artificial intelligence in health competition	1	1	radiologists and	Türkiye	570 participants	F1 score, IoU
None None None radiologists and Türkiye 409 teams F1 score mompetition propertion and propertion of the properties of th	TEKNOFEST 2022 artificial intelligence in health competition	1	None	radiologists and	Türkiye	213 teams	
hallenge 3 21 radiologists U.S. 260 participants months Society for Thoracic radiology members and software labelinge and software sold sold sold sold sold sold sold sold	TEKNOFEST 2023 artificial intelligence in health competition	None	None	radiologists and	Türkiye	409 teams	F1 score
and political prices of the sample detection All challenge 2 39 and adology members and software continued to the American Society of SNA intracranial hemorrhage etection challenge 2 32 32 Society of Thoracic Radiology members 2 32 32 Society of Thoracic Radiology members 32 32 Society of Thoracic Radiology members 32 32 Society of Thoracic Radiology members 34 SNA pulmonary embolism 2 32 32 Society of Thoracic Radiology members 34 SNA pulmonary embolism 2 32 32 Society of Thoracic Radiology members 34 SNA pulmonary embolism 2 32 Society of Thoracic Radiology members 34 Society of Spine Radiology specialists from the American Society of Society of Spine Radiology Members 30 Society Members	RSNA pediatric bone age challenge	3	271		U.S.	260 participants	Mean absolute distance in months
etection challenge 2 32 32 Society of Thoracic Radiology members 2 32 32 Society of Thoracic Radiology members 32 32 Society of Thoracic Radiology members 32 32 Society of Thoracic Radiology members 34 SNA brain tumor Al hallenge 4 1 1 1 Multinational 4 U.S. 1,555 teams 4 Dice similarity coefficient, Hausdorff distance, 695%), AUC, accuracy, FScore (Beta), and Matthew's correlation coefficient of the American Society of Spine Radiology specialists from the American Society of Spine Radiology and the American Society of Spine Radiology members Radiology and the American Society of Spine Radiology and the American Society of Spine Radiology members Radiology and the American Society of Radiology members Radiology and the American Society of Radiology members Radiolo	RSNA pneumonia detection challenge	2	39	radiology members	U.S.	1,400 teams	Mean average precision at different IoU thresholds
etection challenge 2 32 Radiology members U.S. 794 feams Weighted log loss Dice similarity coefficient, Hausdorff distance (95%), AUC, accuracy, FScore (Beta), and Matthew's correlation coefficient Hausdorff distance (95%), AUC, accuracy, FScore (Beta), and Matthew's correlation coefficient SNA COVID-19 AI detection I	RSNA intracranial hemorrhage detection challenge	2	110		U.S.	1,345 teams	
SNA Drain tumor Al hallenge 1 1 1 Multinational U.S. 1,555 teams AUC, accuracy, FScore (Beta), and Matthew's correlation coefficient AUC, accuracy, FScore (Beta), and Matthew's correlation coefficient SNA COVID-19 AI detection hallenge 1 6 Multinational U.S. 1,305 teams Standard PASCAL VOC 2010 mean average precision at IoU > 0.5 SNA cervical spine fracture AI hallenge SNA cervical spine fracture AI 1 None American Society of Neuroradiology and the American Society of Spine Radiology SNA screening hammography breast cancer etection AI challenge SNA abdominal trauma etection AI challenge None None None Radiology and the American Society of Emergency Radiology members SNA abdominal trauma etection AI challenge None None Radiology members Engineers, radiologists, and each injury type and an any-injury prediction generated by the metric students from Türkiye Türkiye Türkiye None None Regineer/radiologist from Singapore 91 participants Roc AUC and balanced accuracy urface learning for clinical euroidance and individe error	RSNA pulmonary embolism detection challenge	2	32		U.S.	784 teams	Weighted log loss
SNA corvical spine fracture AI and langer and spine fracture AI ballenge SNA cervical spine fracture AI ballenge SNA screening Society of Spine Radiology SNA screening Society of Spine Radiology Society of Abdominal fracture Average of the sample weighted log losses from any-injury prediction generated by the metric Badiology members Engineers, radiologists, and PhD/MS/CBSc students from Türkiye Turkiye Dice similarity coefficient, Hausdorff distance, accuracy, AUC, free- response ROC Nee OsteoArthritis Prediction None None None Regineers and surface learning for clinical euroimaging (MLCN None None Regineers Engineers Fingineers Canada (MICCAI 2020 participants ROC AUC and balanced accuracy Mean absolute error Mean absolute error	RSNA brain tumor Al challenge	1	1	Multinational	U.S.	1,555 teams	(Beta), and Matthew's
SNA cervical spine fracture AI hallenge None of Neuroradiology and the American Society of Spine Radiology SNA screening nammography breast cancer etection AI challenge None None Society of Spine Radiology SNA abdominal trauma etection AI challenge None None None None None None Addominal Radiology and the American Society of Abdominal Radiology and the American Society of Emergency Radiology and the American Society of Emergency Radiology and the American Society of Emergency Radiology members HAOS - Combined (CT-MR) ealthy abdominal organ egmentation None None None Engineers, radiologists, and PhD/MSc/BSc students from Türkiye None Students from Türkiye None None Engineer/radiologist (MICCAI 2023) None None None None Engineer/radiologist Prom China (MICCAI 2023) Nee OsteoArthritis Prediction Real Probabilistic F1 score Visa demands Visa dema	RSNA COVID-19 AI detection challenge	1	6	Multinational	U.S.	1,305 teams	2010 mean average
None None None None software tools via commercial via commercial software tools via commercial via commercial software tools via commercial v	RSNA cervical spine fracture Al challenge	1	None	specialists from the American Society of Neuroradiology and the American Society of Spine	U.S.	883 teams	
Abdominal Radiology and the American Society of Emergency Radiology members Abdominal Radiology and the American Society of Emergency Radiology members CHAOS - Combined (CT-MR) ealthy abdominal organ egmentation Turklye Intra- and inter-annotator scores students from Türklye Intra- and inter-annotator scores Engineers, radiologists, and PhD/MSc/BSC students from Türklye Intra- and inter-annotator scores Engineer/radiologist (MICCAI 2023) Intra- and inter-annotator scores Dice similarity coefficient, Hausdorff distance, accuracy, AUC, free-response ROC Noe OsteoArthritis Prediction Intra- and inter-annotator scores Engineer/radiologist (MICCAI 2023) For China 20 participants ROC AUC and balanced accuracy Engineers and euroimaging (MLCN None None radiologists from Singapore 91 participants Mean absolute error	RSNA screening mammography breast cancer detection AI challenge	None	None		U.S.	1,687 teams	Probabilistic F1 score
HAOS - Combined (CT-MR) ealthy abdominal organ egmentation 195 PhD/MSc/BSc students from Türkiye 196 PhD/MSc/BSc students from Türkiye 190 PhD/MSc/BSc students from Türkiye 196 PhD/MSc/BSc students from Türkiye 197 PhD/MSc/BSc students from Türkiye 197 PhD/MSc/BSc students from Türkiye 197 PhD/MSc/BSc students from Türkiye 198 PhD/MSc/BSc students from Millianies 198 PhD/MSc/BSc students from Türkiye 198 PhD/MSc/BSc students from Türkiye 198 PhD/MSc/BSc students from Türkiye 198 PhD/MSc/BSc students from Tür	RSNA abdominal trauma detection Al challenge	None	None	Abdominal Radiology and the American Society of Emergency	U.S.	1,123 teams	weighted log losses from each injury type and an any-injury prediction
egmentation, and lassification challenge None None Engineer/radiologist from China Canada (MICCAI 503 participants accuracy, AUC, free-response ROC Participants of the Control of the Con	CHAOS - Combined (CT-MR) healthy abdominal organ segmentation	1	195	radiologists, and PhD/MSc/BSc students from	Italy	1,500 participants	Intra- and inter-annotator scores
thallenge 1 6 N/A Online 20 participants accuracy urface learning for clinical Engineers and euroimaging (MLCN None None radiologists from Singapore 91 participants Mean absolute error	Tumor detection, segmentation, and classification challenge on automated 3D breast ultrasound	None	None		(MICCAI	503 participants	accuracy, AUC, free-
euroimaging (MLCN None None radiologists from Singapore 91 participants Mean absolute error	KNee OsteoArthritis Prediction Challenge	1	6	N/A		20 participants	
/orkshop challenge, MICCAI) the U.K.	Surface learning for clinical neuroimaging (MLCN workshop challenge, MICCAI)	None	None	•	Singapore	91 participants	Mean absolute error

Table 2. Continued						
Competition	Studies derived from dataset	Citations	Dataset experts	Country	Number of individual participants or teams in the first application	Evaluation criteria
K2S: from undersampled k-space to automatic segmentation (MICCAI)	1	2	Multinational engineers and radiologists	Singapore	87 teams	Dice similarity coefficient
1st Boston neonatal brain injury dataset for hypoxic ischemic encephalopathy lesion segmentation challenge (MICCAI 2023)	1	None	Single-center PhD and MD	Canada	131 participants	Dice, mean average surface distance, normalized surface distance
DBTex challenge	1	1	Multinational engineers and radiologists	U.S.	8 teams	Free-response ROC
COVID-19 lung CT lesion segmentation challenge	1	6	Automated segmentation and confirmation by single-center radiologists	Online	1,096 teams	Dice coefficient, normalized surface Dice, normalized absolute volume error
Kidney tumor segmentation challenge (MICCAI 2019)	3	173	Single radiologist and supervised students	China	106 teams	Sørensen–Dice coefficient
Kidney tumor segmentation challenge (MICCAI 2021)	None	None	Multi-institutional radiologists, urologists, and supervised students	France	N/A	Sørensen–Dice, surface Dice
Kidney tumor segmentation challenge (MICCAI 2023)	None	None	Multi-institutional radiologists, urologists, urologic oncologists, and supervised students	Canada	N/A	Sørensen–Dice, surface Dice
French Society of Radiology Data Challenge 2018	1	31	Multi-institutional radiologists and data scientists	France	323 participants	Dice score, binary AUC
French Society of Radiology Data Challenge 2019	1	18	Multi-institutional radiologists and data scientists	France	143 participants	Dice coefficient, AUC, mean square error
French Society of Radiology Data Challenge 2020	1	10	Multi-institutional radiologists and data scientists	France	39 participants	Concordance index, Dice score, AUROC

loU, Intersection over Union; TEKNOFEST, Annual Aviation, Space and Technology Festival; RSNA, Radiological Society of North America; AI, artificial intelligence; AUC, area under the curve; COVID-19, coronavirus disease 2019; VOC, visual object classes; CT, computed tomography; MRI, magnetic resonance imaging; PhD, Doctor of Philosophy; MSc, master of science; BSc, bachelor of science; MICCAI, International Conference on Medical Image Computing and Computer-Assisted Intervention; ROC, receiver operating characteristic; MLCN, Machine Learning in Clinical Neuroimaging; MD, doctor of medicine; AUROC, area under the receiver operating characteristics.

Footnotes

Conflict of interest disclosure

The authors declared no conflicts of interest.

References

- Recht MP, Dewey M, Dreyer K, et al. Integrating artificial intelligence into the clinical practice of radiology: challenges and recommendations. Eur Radiol. 2020;30(6):3576-3584. [Crossref]
- https://www.iso.org/obp/ui/en/#iso:std:isoiec:42001:ed-1:v1:en Accessed: 05 January 2024. [Crossref]

- Mulryan P, Ni Chleirigh N, O'Mahony AT, et al. An evaluation of information online on artificial intelligence in medical imaging. *Insights Imaging*, 2022;13(1):79. [Crossref]
- Burnside ES, Grist TM, Lasarev MR, Garrett JW, Morris EA. Artificial intelligence in radiology: a leadership survey. J Am Coll Radiol. 2025:S1546-1440(25)00041-00049. [Crossref]
- van Hoek J, Huber A, Leichtle A, et al. A survey on the future of radiology among radiologists, medical students and surgeons: students and surgeons tend to be more skeptical about artificial intelligence and radiologists may fear that other disciplines take over. Eur J Radiol. 2019;121:108742. [Crossref]
- Armato SG 3rd, Drukker K, Hadjiiski L. Al in medical imaging grand challenges: translation from competition to research benefit and patient care. Br J Radiol. 2023;96(1150):20221152. [Crossref]
- Koç U, Akçapınar Sezer E, Özkaya YA, et al. Artificial intelligence in healthcare competition (TEKNOFEST-2021): stroke data set. Eurasian J Med. 2022;54(3):248-258. [Crossref]
- Koç U, Sezer EA, Özkaya YA, et al. Elevating healthcare through artificial intelligence: analyzing the abdominal emergencies data set (TR_ABDOMEN_RAD_EMERGENCY) at TEKNOFEST-2022. Eur Radiol. 2024;34(6):3588-3597. [Crossref]

- Artificial intelligence in health competition.
 Last Accessed: 10.03.2025. [Crossref]
- Halabi SS, Prevedello LM, Kalpathy-Cramer J, et al. The RSNA pediatric bone age machine learning challenge. *Radiology*. 2019;290(2):498-503. [Crossref]
- Siegel EL. What can we learn from the RSNA pediatric bone age machine learning challenge? *Radiology.* 2019;290(2):504-505.
 [Crossref]
- Pan I, Thodberg HH, Halabi SS, Kalpathy-Cramer J, Larson DB. improving automated pediatric bone age estimation using ensembles of models from the 2017 RSNA machine learning challenge. *Radiol Artif Intell*. 2019;1(6):e190053. [Crossref]
- Pan I, Cadrin-Chênevert A, Cheng PM. Tackling the radiological Society of North America pneumonia detection challenge. AJR Am J Roentgenol. 2019;213(3):568-574. [Crossref]
- Chang IY, Huang TY. Deep learningbased classification for lung opacities in chest X-ray radiographs through batch control and sensitivity regulation. Sci Rep. 2022;12(1):17597. [Crossref]
- Flanders AE, Prevedello LM, Shih G, et al. Erratum: construction of a machine learning dataset through collaboration: the RSNA 2019 brain CT hemorrhage challenge. *Radiol Artif Intell*. 2020;2(4):e209002. Erratum for: *Radiol Artif Intell*. 2020;2(3):e190211. [Crossref]
- Danilov G, Kotik K, Negreeva A, et al. Classification of intracranial hemorrhage subtypes using deep learning on CT scans. Stud Health Technol Inform. 2020;272:370-373. [Crossref]
- Colak E, Kitamura FC, Hobbs SB, et al. The RSNA pulmonary embolism CT dataset. *Radiol Artif Intell*. 2021;3(2):e200254. [Crossref]
- Callejas MF, Lin HM, Howard T, et al. Augmentation of the RSNA pulmonary embolism CT dataset with bounding box annotations and anatomic localization of pulmonary emboli. *Radiol Artif Intell*. 2023;5(3):e230001. [Crossref]
- Kim BH, Lee H, Choi KS, et al. Validation of MRI-based models to predict MGMT promoter methylation in gliomas: BraTS 2021 radiogenomics challenge. Cancers (Basel). 2022;14(19):4827. [Crossref]
- Lakhani P, Mongan J, Singhal C, et al. The 2021 SIIM-FISABIO-RSNA machine learning COVID-19 challenge: annotation and standard exam classification of COVID-19 chest radiographs. *J Digit Imaging*. 2023;36(1):365-372. [Crossref]

- Lin HM, Colak E, Richards T, et al. The RSNA cervical spine fracture CT dataset. *Radiol Artif Intell*. 2023;5(5):e230034. [Crossref]
- 22. https://www.kaggle.com/search?q=rsna Accessed: 08 January 2024. [Crossref]
- Kavur AE, Gezer NS, Barış M, et al. CHAOS Challenge - combined (CT-MR) healthy abdominal organ segmentation. *Med Image Anal*. 2021;69:101950. [Crossref]
- 24. Grand challenge. Accessed: 08 Jan 2024. [Crossref]
- Hirvasniemi J, Runhaar J, van der Heijden RA, et al. The KNee OsteoArthritis Prediction (KNOAP2020) challenge: an image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images. Osteoarthritis Cartilage. 2023;31(1):115-125. [Crossref]
- Tolpadi AA, Bharadwaj U, Gao KT, et al. K2S challenge: from undersampled k-space to automatic segmentation. *Bioengineering* (Basel). 2023;10(2):267. [Crossref]
- 27. Bao R, Song Y, Bates SV, et al. Boston neonatal brain injury dataset for hypoxic ischemic encephalopathy (BONBID-HIE): part I. MRI and manual lesion annotation. bioRxiv [Preprint]. 2023;2023.06.30.546841. Update in: *Sci Data*. 2025;12(1):53. [Crossref]
- Konz N, Buda M, Gu H, et al. A competition, benchmark, code, and data for using artificial intelligence to detect lesions in digital breast tomosynthesis. JAMA Netw Open. 2023;6(2):e230524. [Crossref]
- 29. Roth HR, Xu Z, Tor-Díez C, et al. Rapid artificial intelligence solutions in a pandemic-The COVID-19-20 lung CT lesion segmentation challenge. *Med Image Anal.* 2022;82:102605. [Crossref]
- Heller N, Isensee F, Maier-Hein KH, et al. The state of the art in kidney and kidney tumor segmentation in contrast-enhanced CT imaging: results of the KiTS19 challenge. Med Image Anal. 2021;67:101821. [Crossref]
- 31. Sathianathen NJ, Heller N, Tejpaul R, et al. Automatic segmentation of kidneys and kidney tumors: the KiTS19 international challenge. Front Digit Health. 2022;3:797607. [Crossref]
- 32. Causey J, Stubblefield J, Qualls J, et al. An ensemble of U-Net models for kidney tumor segmentation with CT images. *IEEE/ACM Trans Comput Biol Bioinform.* 2022;19(3):1387-1392. [Crossref]
- 33. Lassau N, Estienne T, de Vomecourt P, et al. Five simultaneous artificial intelligence

- data challenges on ultrasound, CT, and MRI. *Diagn Interv Imaging*. 2019;100(4):199-209. [Crossref]
- 34. Lassau N, Bousaid I, Chouzenoux E, et al. Three artificial intelligence data challenges based on CT and MRI. *Diagn Interv Imaging*. 2020;101(12):783-788. [Crossref]
- Lassau N, Bousaid I, Chouzenoux E, et al. Three artificial intelligence data challenges based on CT and ultrasound. *Diagn Interv Imaging*. 2021;102(11):669-674. [Crossref]
- Serra-Burriel M, Miquel, Locher L, Kerstin N. Vokinger KN. Development pipeline and geographic representation of trials for artificial intelligence/machine learning-enabled medical devices (2010 to 2023). NEJM AJ. 2023;1(1). [Crossref]
- Akinci D'Antonoli T, Huisman M. EuSoMII 2023 Highlights and the EU AI Act. Accessed: 10 Jan 2024. [Crossref]
- Gong B, Nugent JP, Guest W, Parker W, Chang PJ, Khosa F, Nicolaou S. Influence of artificial intelligence on Canadian Medical Students' preference for radiology specialty: anational survey study. *Acad Radiol*. 2019;26(4):566-577.
 [Crossref]
- Reeder K, Lee H. Impact of artificial intelligence on US medical students' choice of radiology. Clin Imaging. 2022;81:67-71. [Crossref]
- Center for Artifical Intelligence in Medicine
 Imaging. Summer Research Internship.
 Accessed: 10 Jan 2024. [Crossref]
- 41. Korkmaz S. Artificial intelligence in healthcare: a revolutionary ally or an ethical dilemma? Balkan Med J. 2024;41(2):87-88. [Crossref]
- Maier-Hein L, Reinke A, Kozubek M, et al. BIAS: transparent reporting of biomedical image analysis challenges. *Med Image Anal*. 2020;66:101796. [Crossref]
- 43. Reinke A, Tizabi MD, Eisenmann M, Maier-Hein L. Common pitfalls and recommendations for grand challenges in medical artificial intelligence. *Eur Urol Focus*. 2021;7(4):710-712. [Crossref]
- 44. Maier-Hein L, Eisenmann M, Reinke A, et al. Why rankings of biomedical image analysis competitions should be interpreted with care. *Nat Commun.* 2018;9(1):5217. Erratum in: *Nat Commun.* 2019;10(1):588. [Crossref]
- Wagner DT, Tilmans L, Peng K, et al. Artificial intelligence in neuroradiology: a review of current topics and competition challenges. Diagnostics (Basel). 2023;13(16):2670. [Crossref]